Skip to main content
Top
Published in: Radiological Physics and Technology 1/2019

01-03-2019

Performance evaluation of the CyberKnife system in real-time target tracking during beam delivery using a moving phantom coupled with two-dimensional detector array

Authors: Bin Yang, Tin Lok Chiu, Wai Kong Law, Hui Geng, Wai Wang Lam, Tat Ming Leung, Lok Hang Yiu, Kin Yin Cheung, Siu Ki Yu

Published in: Radiological Physics and Technology | Issue 1/2019

Login to get access

Abstract

The aim of the current study was to evaluate the tracking error of the Synchrony Respiratory Tracking system by conducting beam-by-beam analyses to determine the variation in the tracking beams measured during target motion. A moving phantom of in-house design coupled with a two-dimensional (2D) detector array was used to simulate respiratory motion in the superoinferior (SI) and anteroposterior (AP) direction. A styrofoam block with four implanted fiducial markers was placed on top of the detector to enable the fiducial-based respiratory tracking. Measurements were performed with the phantom under either stationary mode or sinusoidal motion of 6-s cycle and 15/20-mm amplitude at SI and AP direction. The measurement data were saved as movie files that were used to calculate the center shift of the beam with 100-ms sampling time. The tracking accuracy of the system was defined as the targeting error, which could be tracked with probability of > 95% (Ep95). The mean ± standard deviation of Ep95 was 0.28 ± 0.08 mm under stationary condition; 0.66 ± 0.23 mm (range: 0.28–1.22 mm) under sinusoidal respiratory motion. The maximum drift of the beam center for all beam paths was 2.7 mm. The tracking accuracy of CyberKnife Synchrony system was successfully evaluated using a moving phantom and 2D detector array; the maximum tracking error was < 1.5 mm for sinusoidal motion of amplitude ≤ 20 mm.
Literature
1.
go back to reference Solda F, Lodge M, Ashley S, et al. Stereotactic radiotherapy (SABR) for the treatment of primary non-small cell lung cancer: systematic review and comparison with a surgical cohort. Radiother Oncol. 2013;109:1–7.CrossRefPubMed Solda F, Lodge M, Ashley S, et al. Stereotactic radiotherapy (SABR) for the treatment of primary non-small cell lung cancer: systematic review and comparison with a surgical cohort. Radiother Oncol. 2013;109:1–7.CrossRefPubMed
2.
go back to reference Ryu SI, Chang SD, Kim DH, et al. Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurg. 2001;49(4):838–46. Ryu SI, Chang SD, Kim DH, et al. Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurg. 2001;49(4):838–46.
3.
go back to reference Gerszten PC, Ozhasoglu C, Burton SA, et al. CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases. Neurosurg. 2004;55(1):89–98. Gerszten PC, Ozhasoglu C, Burton SA, et al. CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases. Neurosurg. 2004;55(1):89–98.
4.
go back to reference Van der Voort. van Zyp NC, Prevost JB, Hoogeman MS, et al. Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: clinical outcome. Radiother Oncol. 2009;91(3):296–300.CrossRef Van der Voort. van Zyp NC, Prevost JB, Hoogeman MS, et al. Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: clinical outcome. Radiother Oncol. 2009;91(3):296–300.CrossRef
6.
go back to reference Pepin EW, Wu H, Zhang Y, et al. Correlation and prediction uncertainties in the cyberknife synchrony respiratory tracking system. Med Phys. 2011;38:4036–44.CrossRefPubMedPubMedCentral Pepin EW, Wu H, Zhang Y, et al. Correlation and prediction uncertainties in the cyberknife synchrony respiratory tracking system. Med Phys. 2011;38:4036–44.CrossRefPubMedPubMedCentral
7.
go back to reference Winter JD, Wong R, Swaminath A, et al. Accuracy of robotic radiosurgical liver treatment throughout the respiratory cycle. Int J Radiat Oncol Biol Phys. 2015;93:916–24.CrossRefPubMed Winter JD, Wong R, Swaminath A, et al. Accuracy of robotic radiosurgical liver treatment throughout the respiratory cycle. Int J Radiat Oncol Biol Phys. 2015;93:916–24.CrossRefPubMed
8.
go back to reference Ho AK, Fu D, Cotrutz C, et al. A study of the accuracy of cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurg. 2007;60(2 Suppl 1):ONS147–156. Ho AK, Fu D, Cotrutz C, et al. A study of the accuracy of cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurg. 2007;60(2 Suppl 1):ONS147–156.
9.
go back to reference Yu C, Main W, Taylor D, Kuduvalli G, Apuzzo ML, Alder JR Jr. An anthropomorphic phantom study of the accuracy of Cyberknife spinal radiosurgery. Neurosurg. 2004;55(5):1138–49.CrossRef Yu C, Main W, Taylor D, Kuduvalli G, Apuzzo ML, Alder JR Jr. An anthropomorphic phantom study of the accuracy of Cyberknife spinal radiosurgery. Neurosurg. 2004;55(5):1138–49.CrossRef
10.
go back to reference Murphy MJ, Cox RS. The accuracy of dose localization for an image-guided frameless radiosurgery system. Med Phys. 1996;23(12):2043–49.CrossRefPubMed Murphy MJ, Cox RS. The accuracy of dose localization for an image-guided frameless radiosurgery system. Med Phys. 1996;23(12):2043–49.CrossRefPubMed
11.
go back to reference Shiomi H, Inoue T, Nakamura S. Quality assurance for an image-guided frameless radiosurgery system using radiochromic film. Radiat Med. 2000;18(2):107–13.PubMed Shiomi H, Inoue T, Nakamura S. Quality assurance for an image-guided frameless radiosurgery system using radiochromic film. Radiat Med. 2000;18(2):107–13.PubMed
12.
go back to reference Dieterich S, Cavedon C, Chuang CF, Cohen AB, Garrett JA, Lee CL, Lowenstein JR, d’Souza MF, Taylor DD Jr, Wu X, Yu C. Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys. 2011;38(6):2914–36.CrossRefPubMed Dieterich S, Cavedon C, Chuang CF, Cohen AB, Garrett JA, Lee CL, Lowenstein JR, d’Souza MF, Taylor DD Jr, Wu X, Yu C. Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys. 2011;38(6):2914–36.CrossRefPubMed
13.
go back to reference Seppenwoolde Y, Berbeco RI, Nishioka S, Shirato H, Heijmen B. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys. 2007;34(7):2774–84.CrossRefPubMed Seppenwoolde Y, Berbeco RI, Nishioka S, Shirato H, Heijmen B. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys. 2007;34(7):2774–84.CrossRefPubMed
14.
go back to reference Hoogeman M, Prevost JB, Nuyttens J, Poll J, Levendaq P, Heijmen B. Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files. Int J Radiat Oncol Biol Phys. 2009;74(1):297–303.CrossRefPubMed Hoogeman M, Prevost JB, Nuyttens J, Poll J, Levendaq P, Heijmen B. Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files. Int J Radiat Oncol Biol Phys. 2009;74(1):297–303.CrossRefPubMed
15.
go back to reference Nioutsikou E, Seppenwoolde Y, Symonds-Tayler JR, Heijmen B, Evans P, Webb S. Dosimetric investigation of lung tumor motion compensation with a robotic respiratory tracking system: an experimental study. Med Phys. 2008;35(4):1232–40.CrossRefPubMed Nioutsikou E, Seppenwoolde Y, Symonds-Tayler JR, Heijmen B, Evans P, Webb S. Dosimetric investigation of lung tumor motion compensation with a robotic respiratory tracking system: an experimental study. Med Phys. 2008;35(4):1232–40.CrossRefPubMed
16.
go back to reference Chan MK, Kwong DL, Ng SC, Tong AS, Tam EK. Accuracy and sensitivity of four-dimensional dose calculation to systematic motion variability in stereotactic body radiotherapy (SBRT) for lung cancer. J Appl Clin Med Phys. 2012;13(6):3992.CrossRefPubMed Chan MK, Kwong DL, Ng SC, Tong AS, Tam EK. Accuracy and sensitivity of four-dimensional dose calculation to systematic motion variability in stereotactic body radiotherapy (SBRT) for lung cancer. J Appl Clin Med Phys. 2012;13(6):3992.CrossRefPubMed
17.
go back to reference Inoue M, Shiomi H, Iwata H, et al. Development of system using beam’s eye view images to measure respiratory motion tracking errors in image-guided robotic radiosurgery system. J Appl Clin Med Phys. 2015;16(1):100–11.CrossRefPubMedCentral Inoue M, Shiomi H, Iwata H, et al. Development of system using beam’s eye view images to measure respiratory motion tracking errors in image-guided robotic radiosurgery system. J Appl Clin Med Phys. 2015;16(1):100–11.CrossRefPubMedCentral
18.
go back to reference Sumida I, Shiomi H, Higashinaka N, Murashima Y, Miyamoto Y, Yamazaki H, Mabuchi N, Tsuda E, Ogawa K. Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid. J Appl Clin Med Phys. 2016 Mar 8;17(2):74–84. Sumida I, Shiomi H, Higashinaka N, Murashima Y, Miyamoto Y, Yamazaki H, Mabuchi N, Tsuda E, Ogawa K. Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid. J Appl Clin Med Phys. 2016 Mar 8;17(2):74–84.
20.
go back to reference Cheung K, Lam W, Geng H, Wong R, Ho R, Kong C, Wu P, Yu S. MO-F213AB-05: commissioning of gated RapidArc radiotherapy for treatment of moving targets. Med Phys. 2012;39:3872.CrossRefPubMed Cheung K, Lam W, Geng H, Wong R, Ho R, Kong C, Wu P, Yu S. MO-F213AB-05: commissioning of gated RapidArc radiotherapy for treatment of moving targets. Med Phys. 2012;39:3872.CrossRefPubMed
21.
go back to reference Kilby W, Dooley JR, Kuduvalli G, Sayeh S, Maurer CR Jr. The CyberKnife Robotic Radiosurgery System in 2010. Technol Cancer Res Treat. 2010;9(5):433–52.CrossRefPubMed Kilby W, Dooley JR, Kuduvalli G, Sayeh S, Maurer CR Jr. The CyberKnife Robotic Radiosurgery System in 2010. Technol Cancer Res Treat. 2010;9(5):433–52.CrossRefPubMed
22.
go back to reference Jung J, Song SY, Yoon SM, et al. Verification of accuracy of CyberKnife tumor-tracking radiation therapy using patient-specific lung phantoms. Int J Radiat Oncol Biol Phys. 2015;92:745–53.CrossRefPubMed Jung J, Song SY, Yoon SM, et al. Verification of accuracy of CyberKnife tumor-tracking radiation therapy using patient-specific lung phantoms. Int J Radiat Oncol Biol Phys. 2015;92:745–53.CrossRefPubMed
23.
go back to reference Nakayama M, Nishimura H, Mayahara H, Nakamura M, Uehara K, Tsudou S, Harada A, Akasaka H, Sasaki R. Clinical log data analysis for assessing the accuracy of the CyberKnife fiducial-free lung tumor tracking system. Pract Radiat Oncol. 2018;8(2):e63–70.CrossRefPubMed Nakayama M, Nishimura H, Mayahara H, Nakamura M, Uehara K, Tsudou S, Harada A, Akasaka H, Sasaki R. Clinical log data analysis for assessing the accuracy of the CyberKnife fiducial-free lung tumor tracking system. Pract Radiat Oncol. 2018;8(2):e63–70.CrossRefPubMed
Metadata
Title
Performance evaluation of the CyberKnife system in real-time target tracking during beam delivery using a moving phantom coupled with two-dimensional detector array
Authors
Bin Yang
Tin Lok Chiu
Wai Kong Law
Hui Geng
Wai Wang Lam
Tat Ming Leung
Lok Hang Yiu
Kin Yin Cheung
Siu Ki Yu
Publication date
01-03-2019
Publisher
Springer Singapore
Published in
Radiological Physics and Technology / Issue 1/2019
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-018-00495-2

Other articles of this Issue 1/2019

Radiological Physics and Technology 1/2019 Go to the issue