Skip to main content
Top
Published in: Radiological Physics and Technology 4/2017

01-12-2017

Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT)

Authors: Ryoichi Seki, Yushi Wakisaka, Nami Morimoto, Masaaki Takashina, Masahiko Koizumi, Hiroshi Toki, Mitsuhiro Fukuda

Published in: Radiological Physics and Technology | Issue 4/2017

Login to get access

Abstract

The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.
Appendix
Available only for authorised users
Literature
1.
go back to reference Barth R, Vicente M, Harling O, Kiger WS III, Riley KJ, Binnes PJ, Wagner FM, Suzuki M, Aihara T, Kato I, Kawabata S. Boron Neutron capture therapy of cancer: current status and future prospects. Rad Oncol. 2012;7:146–66.CrossRef Barth R, Vicente M, Harling O, Kiger WS III, Riley KJ, Binnes PJ, Wagner FM, Suzuki M, Aihara T, Kato I, Kawabata S. Boron Neutron capture therapy of cancer: current status and future prospects. Rad Oncol. 2012;7:146–66.CrossRef
2.
go back to reference Hopewell JW, Morris GM, Schwint A, Coderre JA. The radiobiological principles of boron neutron capture therapy: a critical review. App Rad Isotopes. 2011;69:1756–9.CrossRef Hopewell JW, Morris GM, Schwint A, Coderre JA. The radiobiological principles of boron neutron capture therapy: a critical review. App Rad Isotopes. 2011;69:1756–9.CrossRef
3.
go back to reference Sauerwein WAG, Wittig A, Moss R, Nakagawa Y, editors. Neutron capture therapy, principles and applications. Berlin: Springer-Verlag; 2012. Sauerwein WAG, Wittig A, Moss R, Nakagawa Y, editors. Neutron capture therapy, principles and applications. Berlin: Springer-Verlag; 2012.
4.
go back to reference BNCT. From the basic to applications. Tokyo: Association for Nuclear Technology in Medicine, and Japanese Society of Neutron Capture Therapy; 2011. Chap. III and pp 139–141. BNCT. From the basic to applications. Tokyo: Association for Nuclear Technology in Medicine, and Japanese Society of Neutron Capture Therapy; 2011. Chap. III and pp 139–141.
5.
go back to reference Kato I, Ono K, Sakurai Y, Ohmae M, Maruhashi A, Imahori Y, Kirihata M, Nakazawa M, Yura Y. Effectiveness of BNCT for recurrent head and neck malignancies. App Rad Isotopes. 2004;61:1069–73.CrossRef Kato I, Ono K, Sakurai Y, Ohmae M, Maruhashi A, Imahori Y, Kirihata M, Nakazawa M, Yura Y. Effectiveness of BNCT for recurrent head and neck malignancies. App Rad Isotopes. 2004;61:1069–73.CrossRef
6.
go back to reference Hiratsuka J, Kamitani N, Sasaoka S, Kuwabata C. Cutaneous Melanoma. Radioisotopes. 2015;64:115–21.CrossRef Hiratsuka J, Kamitani N, Sasaoka S, Kuwabata C. Cutaneous Melanoma. Radioisotopes. 2015;64:115–21.CrossRef
7.
go back to reference Locher GL. Biological effects and therapeutic possibilities of neutron. Am J Roentgonol. 1936;36:1–13. Locher GL. Biological effects and therapeutic possibilities of neutron. Am J Roentgonol. 1936;36:1–13.
8.
go back to reference Chadwick J. The existence of a neutron. Proc R Soc London A. 1932;136:692–708.CrossRef Chadwick J. The existence of a neutron. Proc R Soc London A. 1932;136:692–708.CrossRef
9.
go back to reference Soloway AH, Hatanaka H, Davis MA. Penetration ofbrain and brain tumor. VII. Tumor-binding sulfhydry boron compounds1,2. J Med Chem. 1967;10:714–7.CrossRefPubMed Soloway AH, Hatanaka H, Davis MA. Penetration ofbrain and brain tumor. VII. Tumor-binding sulfhydry boron compounds1,2. J Med Chem. 1967;10:714–7.CrossRefPubMed
10.
go back to reference Mishima Y, Honda C, Ichihashi M, Obara H, Hiratsuka J, Fukuda H, Karashima H, Kohayashi T, Kanda K, Yoshino K. Treatment of malignantmelanoma by single thermal neutron capture therapy with melanoma-seeking \({}^{10}\)B-compound. Lancet. 1989;334:388–9.CrossRef Mishima Y, Honda C, Ichihashi M, Obara H, Hiratsuka J, Fukuda H, Karashima H, Kohayashi T, Kanda K, Yoshino K. Treatment of malignantmelanoma by single thermal neutron capture therapy with melanoma-seeking \({}^{10}\)B-compound. Lancet. 1989;334:388–9.CrossRef
11.
go back to reference Nakagawa Y, Pooh K, Kobayashi T, Kageji T, Uyama S, Matsumura A, Kumada H. Clinical review of the Japanese experience with boron neutron capture therapy and a proposed strategy using epi-thermal neutron beams. J Neuro Oncol. 2003;62:87–99. Nakagawa Y, Pooh K, Kobayashi T, Kageji T, Uyama S, Matsumura A, Kumada H. Clinical review of the Japanese experience with boron neutron capture therapy and a proposed strategy using epi-thermal neutron beams. J Neuro Oncol. 2003;62:87–99.
12.
go back to reference Savolainen S, Kortesniemi M, Timonen M, Reijonen V, Kuusela L, Uusi-Simola J, Salli E, Koivunoro H, Seppälä T, Lönnroth N, Välimäki P, Hyvönen H, Kotiluoto P, Serén T, Kuronen A, Heikkinen S, Kosunen A, Auterinen I. Boron neutron capture therapy (BNCT) in Finland: Technological and physical prospects after 20years of experiences. Phys Med. 2013;29:233–48.CrossRefPubMed Savolainen S, Kortesniemi M, Timonen M, Reijonen V, Kuusela L, Uusi-Simola J, Salli E, Koivunoro H, Seppälä T, Lönnroth N, Välimäki P, Hyvönen H, Kotiluoto P, Serén T, Kuronen A, Heikkinen S, Kosunen A, Auterinen I. Boron neutron capture therapy (BNCT) in Finland: Technological and physical prospects after 20years of experiences. Phys Med. 2013;29:233–48.CrossRefPubMed
13.
go back to reference Sauerwein W, Zurlo A. The EORTIC Boron Neutron Capture Therapy (BNCT) Group: achievements and future projects. Eur J Cancer. 2002;38:S31–4.CrossRefPubMed Sauerwein W, Zurlo A. The EORTIC Boron Neutron Capture Therapy (BNCT) Group: achievements and future projects. Eur J Cancer. 2002;38:S31–4.CrossRefPubMed
14.
go back to reference Yu HT, Liu YWH, Lin TY, Wang LW. BNCT treatment plnning of recurrent head and neck cancer using THORplan. Appl Radiat Isot. 2011;69:1907–10.CrossRefPubMed Yu HT, Liu YWH, Lin TY, Wang LW. BNCT treatment plnning of recurrent head and neck cancer using THORplan. Appl Radiat Isot. 2011;69:1907–10.CrossRefPubMed
15.
go back to reference Takagaki M, Tomaru N, Maguire JA, Hosmane NS. Future applications of Boron and Gadolinium neutron capture therapy. In: Hosmane NS, editor. Boron science, new technologies and applications. Boca Raton: CRC Press; 2011. p. 243–76.CrossRef Takagaki M, Tomaru N, Maguire JA, Hosmane NS. Future applications of Boron and Gadolinium neutron capture therapy. In: Hosmane NS, editor. Boron science, new technologies and applications. Boca Raton: CRC Press; 2011. p. 243–76.CrossRef
16.
go back to reference ICRU Report 90. Key data for ionizing-radiation dosimetry: measurement standards and applications. J ICRU. 2016;14. ICRU Report 90. Key data for ionizing-radiation dosimetry: measurement standards and applications. J ICRU. 2016;14.
17.
go back to reference Hall EJ, Giaccia AJ. Radiobiology for the dadiologist. 7th ed. Philadelphia: Lippincott Williams & Wikins; 2012. Hall EJ, Giaccia AJ. Radiobiology for the dadiologist. 7th ed. Philadelphia: Lippincott Williams & Wikins; 2012.
18.
go back to reference Valentin J, editor. ICRP Publication 103. The 2007 recommendations of the international commission on radiological protection. Annals ICRP. 2007. Valentin J, editor. ICRP Publication 103. The 2007 recommendations of the international commission on radiological protection. Annals ICRP. 2007.
19.
go back to reference Sørensen BS, Overgaard J, Bassler N. In vitro RBE-LET dependence for multiple particle types. Acta Oncologica. 2011;50:757–62.CrossRefPubMed Sørensen BS, Overgaard J, Bassler N. In vitro RBE-LET dependence for multiple particle types. Acta Oncologica. 2011;50:757–62.CrossRefPubMed
20.
go back to reference Goorley J, Kiger WS III, Zamenhof RG. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models. Med Phys. 2002;29:145–56.CrossRefPubMed Goorley J, Kiger WS III, Zamenhof RG. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models. Med Phys. 2002;29:145–56.CrossRefPubMed
21.
go back to reference Caswell RS, Coyne JJ, Randolph KL. Kerma factors for neutron energies below 30 MeV. Rad Res. 1980;83:217–54.CrossRef Caswell RS, Coyne JJ, Randolph KL. Kerma factors for neutron energies below 30 MeV. Rad Res. 1980;83:217–54.CrossRef
22.
go back to reference ICRU Report 46. Photon, electron, proton, and neutron interaction data for body tissues ICRU. 1992. Appendix A, Body tissue compositions. ICRU Report 46. Photon, electron, proton, and neutron interaction data for body tissues ICRU. 1992. Appendix A, Body tissue compositions.
24.
go back to reference Reichl LE. A modern course on statistical physics. 4th ed. New York. Wiley; 2016. Reichl LE. A modern course on statistical physics. 4th ed. New York. Wiley; 2016.
25.
go back to reference Parks DE, Beyster JR, Nelkin MS, Wikner NF. Slow neutron scattering and thermalization with reactor applications. New York: Benjamin; 1970. Parks DE, Beyster JR, Nelkin MS, Wikner NF. Slow neutron scattering and thermalization with reactor applications. New York: Benjamin; 1970.
26.
go back to reference Fermi E. A course in neutron physics. In: Collected papers Vol. II. Chicago: University of Chicago Press; 1966. pp. 440–542. Fermi E. A course in neutron physics. In: Collected papers Vol. II. Chicago: University of Chicago Press; 1966. pp. 440–542.
27.
go back to reference Fermi E. Nuclear Physics. Chicago: Univ. Chicago Press; 1951. Revised Ed. Chapt.9. Fermi E. Nuclear Physics. Chicago: Univ. Chicago Press; 1951. Revised Ed. Chapt.9.
28.
go back to reference Segré E. Nuclei and particles. 2nd Ed. Chap. 12. Reading: W. A. Benjamin; 1977. Segré E. Nuclei and particles. 2nd Ed. Chap. 12. Reading: W. A. Benjamin; 1977.
29.
go back to reference McDermott PN. Tutorials in radiotherapy physics. Chap. 5. Boca Raton: CRC Press; 2016. McDermott PN. Tutorials in radiotherapy physics. Chap. 5. Boca Raton: CRC Press; 2016.
30.
go back to reference X-5 Monte Carlo Team. MCNP—a general Monte Carlo N-particle transport code, Version 5. Los Alamos Nat. Lab; 2003. LA-UR03-1987. X-5 Monte Carlo Team. MCNP—a general Monte Carlo N-particle transport code, Version 5. Los Alamos Nat. Lab; 2003. LA-UR03-1987.
31.
go back to reference Sato T, Niita K, Matsuda N, Hashimoto H, Iwamoto Y, Noda S, Ogawa T, Iwase H, Nakashima H, Fukahori T, Okamura K, Kai T, Chiba S, Furuta T, Sihver L. Particle and Heavy Ion Transport Code System PHITS, Version 2.52. J Nucl Sci Technol. 2013;50:913–23.CrossRef Sato T, Niita K, Matsuda N, Hashimoto H, Iwamoto Y, Noda S, Ogawa T, Iwase H, Nakashima H, Fukahori T, Okamura K, Kai T, Chiba S, Furuta T, Sihver L. Particle and Heavy Ion Transport Code System PHITS, Version 2.52. J Nucl Sci Technol. 2013;50:913–23.CrossRef
32.
go back to reference Wessol D, Cohen M, Harkin G, Rossmeier M, Wemple C, Wheeler F. SERA Workshop Lab Manual. 1999. INEEL/EXT-99-00766. Wessol D, Cohen M, Harkin G, Rossmeier M, Wemple C, Wheeler F. SERA Workshop Lab Manual. 1999. INEEL/EXT-99-00766.
33.
go back to reference Nigg D, Wemple C, Wessol D, Wheeler F. SERA-an advanced treatment planning system for neutron capture therapy and BNCT. Trans Am Nucl Soc. 1999;80:66. Nigg D, Wemple C, Wessol D, Wheeler F. SERA-an advanced treatment planning system for neutron capture therapy and BNCT. Trans Am Nucl Soc. 1999;80:66.
34.
go back to reference Kumada H, Takada K, Yamanashi K, Sakae T, Hatsumura A, Sakurai H. Verification of nuclear data for the Tsukuba plan, a newly developed treatment planning system for boron capture therapy. Appl Radiat Isot. 2015;106:111–5.CrossRefPubMed Kumada H, Takada K, Yamanashi K, Sakae T, Hatsumura A, Sakurai H. Verification of nuclear data for the Tsukuba plan, a newly developed treatment planning system for boron capture therapy. Appl Radiat Isot. 2015;106:111–5.CrossRefPubMed
35.
go back to reference IAEA-TECDOC-1223. Current status of neutron therapy. Vienna: IAEA; 2001. IAEA-TECDOC-1223. Current status of neutron therapy. Vienna: IAEA; 2001.
36.
go back to reference Tanaka H, Sakurai Y, Suzuki M, Masunaga S, Kinashi Y, Kashino G, Liu Y, Matsumoto T, Yajima S, Tsutsui H, Maruhashi A, Ono K. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy. Nucl Instr Meth Phys Res B. 2009;267:1970–7.CrossRef Tanaka H, Sakurai Y, Suzuki M, Masunaga S, Kinashi Y, Kashino G, Liu Y, Matsumoto T, Yajima S, Tsutsui H, Maruhashi A, Ono K. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy. Nucl Instr Meth Phys Res B. 2009;267:1970–7.CrossRef
37.
go back to reference Tanaka H, Sakurai Y, Suzuki M, Masunaga S, Mitsumoto T, Fujita K, Kashino G, Kinashi Y, Liu Y, Takada M, Ono K, Maruhashi A. Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS). App Rad and Isot. 2011;69:1642–5.CrossRef Tanaka H, Sakurai Y, Suzuki M, Masunaga S, Mitsumoto T, Fujita K, Kashino G, Kinashi Y, Liu Y, Takada M, Ono K, Maruhashi A. Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS). App Rad and Isot. 2011;69:1642–5.CrossRef
38.
go back to reference Miyatake SI, Kawabata S, Kajimoto Y, Aoki A, Yokoyama K, Yamada M, Kuroiwa T, Tsuji M, Imahori Y, Kirihata M, Sakurai Y, Matsunaga SI, Nagata K, Maruhashi A, Ono K. Modified boron neutron capture therapy for malignant gliomas performed using epithermal neutron and two boron compounds with different accumulations: an efficacy study based on findings on neuroimges. J Neurosurg. 2005;103:1000–9.CrossRefPubMed Miyatake SI, Kawabata S, Kajimoto Y, Aoki A, Yokoyama K, Yamada M, Kuroiwa T, Tsuji M, Imahori Y, Kirihata M, Sakurai Y, Matsunaga SI, Nagata K, Maruhashi A, Ono K. Modified boron neutron capture therapy for malignant gliomas performed using epithermal neutron and two boron compounds with different accumulations: an efficacy study based on findings on neuroimges. J Neurosurg. 2005;103:1000–9.CrossRefPubMed
39.
go back to reference Bisceglie E, Colangelo P, Colonna N, Santorelli P, Variale V. On the optimal energy of epithermalneutron beams for BNCT. Phys Med Biol. 2000;45:49–58.CrossRef Bisceglie E, Colangelo P, Colonna N, Santorelli P, Variale V. On the optimal energy of epithermalneutron beams for BNCT. Phys Med Biol. 2000;45:49–58.CrossRef
40.
go back to reference Yanch J, Zhou X-L, Brownell G. A Monte Carlo investigation of the dosimetric properties of monoenergetic neutron beams for neutron capture therapy. Rad Res. 1991;126:1–20.CrossRef Yanch J, Zhou X-L, Brownell G. A Monte Carlo investigation of the dosimetric properties of monoenergetic neutron beams for neutron capture therapy. Rad Res. 1991;126:1–20.CrossRef
41.
go back to reference Nuclear Physics European Collaboration Committee (NuPECC). Nuclear Physics for Medicine. Section 10. Strasboug: European Science Foundation; 2014. Nuclear Physics European Collaboration Committee (NuPECC). Nuclear Physics for Medicine. Section 10. Strasboug: European Science Foundation; 2014.
42.
go back to reference Thames HD, Hendry JH. Fractionation in raiotherapy. Chap. 2. London: Taylor & Francis; 1987. Thames HD, Hendry JH. Fractionation in raiotherapy. Chap. 2. London: Taylor & Francis; 1987.
43.
go back to reference Coderre JA, Makar MS, Micca PL, Nawrocky MM, Liu HB, Joel DD, Slatkin DN, Amols HI. Derivations of relative biological effectiveness for the high-LET radiations reduced during boron neutron capture irradiations of the 9L rat gliosarcoma in vitro and in vivo. Int J Rad Oncol Biol Phys. 1993;27:1121–9.CrossRef Coderre JA, Makar MS, Micca PL, Nawrocky MM, Liu HB, Joel DD, Slatkin DN, Amols HI. Derivations of relative biological effectiveness for the high-LET radiations reduced during boron neutron capture irradiations of the 9L rat gliosarcoma in vitro and in vivo. Int J Rad Oncol Biol Phys. 1993;27:1121–9.CrossRef
44.
go back to reference Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys. 1997;24:103–10.CrossRefPubMed Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys. 1997;24:103–10.CrossRefPubMed
45.
go back to reference Suzuki S. A theoretical model for simultaneous mixed irradiation with multiple types of radiation. J Radiat Res. 1998;39:215–21.CrossRefPubMed Suzuki S. A theoretical model for simultaneous mixed irradiation with multiple types of radiation. J Radiat Res. 1998;39:215–21.CrossRefPubMed
46.
go back to reference Niemierko A. A generalized concept of equivalent uniform dose (EUD). Med Phys. 1999;26:1100. (Abstract WE-C2-9). Niemierko A. A generalized concept of equivalent uniform dose (EUD). Med Phys. 1999;26:1100. (Abstract WE-C2-9).
47.
go back to reference AAPM Task Group 116 of the Therapy Physics Committee. AAPM Report No. 166: The used and QA of biologically related models for treatment planning. College Park: AAPM; 2012. AAPM Task Group 116 of the Therapy Physics Committee. AAPM Report No. 166: The used and QA of biologically related models for treatment planning. College Park: AAPM; 2012.
48.
go back to reference Ebert MA. Validity of the EUD and TCP concept as reliable dose indicators. Phys Med Biol. 2000;45:441–57.CrossRefPubMed Ebert MA. Validity of the EUD and TCP concept as reliable dose indicators. Phys Med Biol. 2000;45:441–57.CrossRefPubMed
49.
go back to reference Djajaputra D, Wu Q. On relating the generalized equivalent uniform dose formalism to the linear-quadratic model. Med Phys. 2006;33:4481–9.CrossRefPubMed Djajaputra D, Wu Q. On relating the generalized equivalent uniform dose formalism to the linear-quadratic model. Med Phys. 2006;33:4481–9.CrossRefPubMed
50.
go back to reference Masunaga S, Sakurai Y, Tanaka H, Tano K, Suzuki M, Kondo N, Nakabayashi M, Nakagawa Y, Watanabe T, Maruhasgi A, Ono K. The dependency of compound biological effectiveness factors on the type and the concentration of administered neutron capture agents in boron neutron capture therapy. Springer Plus. 2014;3:128–38.CrossRefPubMedPubMedCentral Masunaga S, Sakurai Y, Tanaka H, Tano K, Suzuki M, Kondo N, Nakabayashi M, Nakagawa Y, Watanabe T, Maruhasgi A, Ono K. The dependency of compound biological effectiveness factors on the type and the concentration of administered neutron capture agents in boron neutron capture therapy. Springer Plus. 2014;3:128–38.CrossRefPubMedPubMedCentral
51.
go back to reference Ono K. An analysis of the structure of the compound biological effectiveness factor. J. Rad Res. 2016;57:i83–9.CrossRef Ono K. An analysis of the structure of the compound biological effectiveness factor. J. Rad Res. 2016;57:i83–9.CrossRef
52.
go back to reference Gonzales SJ, Santa Cruz GA. The photon-isoffective dose in boron neutron capture therapy. Rad Res. 2012;178:609–21.CrossRef Gonzales SJ, Santa Cruz GA. The photon-isoffective dose in boron neutron capture therapy. Rad Res. 2012;178:609–21.CrossRef
53.
go back to reference Barth RF. Boron neutron capture therapy at the cross roads: Callenges and oppotunities. App Rad Isot. 2009;67:S3–6.CrossRef Barth RF. Boron neutron capture therapy at the cross roads: Callenges and oppotunities. App Rad Isot. 2009;67:S3–6.CrossRef
54.
go back to reference Lupton R. Statistics in theory and practice. Chap. 2. Princeton: Princeton University Press; 1993. Lupton R. Statistics in theory and practice. Chap. 2. Princeton: Princeton University Press; 1993.
Metadata
Title
Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT)
Authors
Ryoichi Seki
Yushi Wakisaka
Nami Morimoto
Masaaki Takashina
Masahiko Koizumi
Hiroshi Toki
Mitsuhiro Fukuda
Publication date
01-12-2017
Publisher
Springer Singapore
Published in
Radiological Physics and Technology / Issue 4/2017
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-017-0430-5

Other articles of this Issue 4/2017

Radiological Physics and Technology 4/2017 Go to the issue