Skip to main content
Top
Published in: International Journal of Hematology 2/2020

01-02-2020 | Myelodysplastic Syndrome | Original Article

Novel DDX41 variants in Thai patients with myeloid neoplasms

Authors: Chantana Polprasert, June Takeda, Pimjai Niparuck, Thanawat Rattanathammethee, Arunrat Pirunsarn, Amornchai Suksusut, Sirorat Kobbuaklee, Kitsada Wudhikarn, Panisinee Lawasut, Sunisa Kongkiatkamon, Suporn Chuncharunee, Kritanan Songserm, Prasit Phowthongkum, Udomsak Bunworasate, Yasuhito Nannya, Kenichi Yoshida, Hideki Makishima, Seishi Ogawa, Ponlapat Rojnuckarin

Published in: International Journal of Hematology | Issue 2/2020

Login to get access

Abstract

Germline DDX41 mutations were recently reported to cause MDS/AML and donor-derived leukemia after transplantation. While previously described in Western countries, DDX41 variants have not been reported in a Southeast Asian population. We performed targeted sequencing of blood or bone marrow samples from 109 Thai patients with myeloid malignancies. Among the 109 patients (75 MDS, 8 MPN, 11 MDS/MPN and 15 AML), the most frequent mutations were in ASXL1 (17.4%), TET2 (16.5%) and SRSF2 (12.8%), respectively. DDX41 variants were detectable in six (5.5%) cases. Four patients exhibited three presumable germline DDX41 mutations: p.S21fs (n = 2), p.F235fs (n = 1), and p.R339H (n = 1). While p.S21fs was previously reported in myeloid neoplasm, the latter two variants have not been described. Two of these cases harbored concomitant probable germline/somatic DDX41 mutations (p.S21fs/p.R525H and p.R339H/p.K494T), while the other two patients carried only somatic mutations (p.R525H and p.F438L). The p.K494T and p.F438L variants have not been previously reported. In patients with DDX41 alterations, the diagnoses were MDS with excess blasts (4), secondary AML (1) and low-risk MDS (1). In conclusion, we identified DDX41 variants in Thai patients with myeloid malignancies in which these variants could be used to assess predisposition to MDS in Southeast Asia.
Literature
1.
go back to reference Owen CJ, Toze CL, Koochin A, Forrest DL, Smith CA, Steven JM, et al. Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood. 2008;112:4639–45.CrossRefPubMed Owen CJ, Toze CL, Koochin A, Forrest DL, Smith CA, Steven JM, et al. Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood. 2008;112:4639–45.CrossRefPubMed
2.
go back to reference Churpek JE, Garcia JS, Madzo J, Jackson SA, Onel K, Godley LA. Identification and molecular characterization of a novel 3′ mutation in RUNX1 in a family with familial platelet disorder. Leuk Lymphoma. 2010;51:1931–5.CrossRefPubMed Churpek JE, Garcia JS, Madzo J, Jackson SA, Onel K, Godley LA. Identification and molecular characterization of a novel 3′ mutation in RUNX1 in a family with familial platelet disorder. Leuk Lymphoma. 2010;51:1931–5.CrossRefPubMed
3.
go back to reference Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371:221–6.CrossRefPubMed Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371:221–6.CrossRefPubMed
4.
go back to reference Pabst T, Eyholzer M, Fos J, Mueller BU. Heterogeneity within AML with CEBPA mutations; only CEBPA double mutations, but not single CEBPA mutations are associated with favorable prognosis. Br J Cancer. 2009;100:1343–6.CrossRefPubMedPubMedCentral Pabst T, Eyholzer M, Fos J, Mueller BU. Heterogeneity within AML with CEBPA mutations; only CEBPA double mutations, but not single CEBPA mutations are associated with favorable prognosis. Br J Cancer. 2009;100:1343–6.CrossRefPubMedPubMedCentral
6.
go back to reference Polprasert C, Schulze I, Sekeres MA, Makishima H, Przychodzen B, Hosono N, et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell. 2015;27:658–70.CrossRefPubMed Polprasert C, Schulze I, Sekeres MA, Makishima H, Przychodzen B, Hosono N, et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell. 2015;27:658–70.CrossRefPubMed
7.
go back to reference Lewinsohn M, Brown AL, Weinel LM, Phung C, Rafidi G, Lee MK, et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood. 2016;127:1017–23.CrossRefPubMedPubMedCentral Lewinsohn M, Brown AL, Weinel LM, Phung C, Rafidi G, Lee MK, et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood. 2016;127:1017–23.CrossRefPubMedPubMedCentral
8.
go back to reference Kobayashi S, Kobayashi A, Osawa Y, Nagao S, Takano K, Okada Y, et al. Donor cell leukemia arising from preleukemic clones with a novel germline DDX41 mutation after allogenic hematopoietic stem cell transplantation. Leukemia. 2017;31:1020–2.CrossRefPubMed Kobayashi S, Kobayashi A, Osawa Y, Nagao S, Takano K, Okada Y, et al. Donor cell leukemia arising from preleukemic clones with a novel germline DDX41 mutation after allogenic hematopoietic stem cell transplantation. Leukemia. 2017;31:1020–2.CrossRefPubMed
9.
go back to reference Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122:3616–27.CrossRefPubMedPubMedCentral Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122:3616–27.CrossRefPubMedPubMedCentral
10.
go back to reference Malcovati L, Karimi M, Papaemmanuil E, Ambaglio I, Jädersten M, Jansson M, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126:233–41.CrossRefPubMedPubMedCentral Malcovati L, Karimi M, Papaemmanuil E, Ambaglio I, Jädersten M, Jansson M, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126:233–41.CrossRefPubMedPubMedCentral
Metadata
Title
Novel DDX41 variants in Thai patients with myeloid neoplasms
Authors
Chantana Polprasert
June Takeda
Pimjai Niparuck
Thanawat Rattanathammethee
Arunrat Pirunsarn
Amornchai Suksusut
Sirorat Kobbuaklee
Kitsada Wudhikarn
Panisinee Lawasut
Sunisa Kongkiatkamon
Suporn Chuncharunee
Kritanan Songserm
Prasit Phowthongkum
Udomsak Bunworasate
Yasuhito Nannya
Kenichi Yoshida
Hideki Makishima
Seishi Ogawa
Ponlapat Rojnuckarin
Publication date
01-02-2020
Publisher
Springer Singapore
Published in
International Journal of Hematology / Issue 2/2020
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-019-02770-3

Other articles of this Issue 2/2020

International Journal of Hematology 2/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine