Skip to main content
Top
Published in: International Journal of Hematology 1/2018

01-01-2018 | Progress in Hematology

Iron and infection

Author: Tomas Ganz

Published in: International Journal of Hematology | Issue 1/2018

Login to get access

Abstract

Iron is an essential trace metal for nearly all infectious microorganisms, and host defense mechanisms target this dependence to deprive microbes of iron. This review highlights mechanisms that are activated during infections to restrict iron on mucosal surfaces, in plasma and extracellular fluid, and within macrophages. Iron overload disorders, such as hereditary hemochromatosis or β-thalassemia, interfere with iron-restrictive host responses, and thereby cause increased susceptibility to infections with microbes that can exploit this vulnerability. Anemia of inflammation (formerly known as anemia of chronic diseases) is an “off-target” effect of host defense wherein inflammatory cytokines shorten erythrocyte lifespan by activating macrophages, prioritize leukocyte production in the marrow, and induce hepcidin to increase plasma transferrin saturation and the concentration of non-transferrin-bound iron.
Literature
1.
go back to reference Archibald F. Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol Lett. 1983;19:29–32.CrossRef Archibald F. Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol Lett. 1983;19:29–32.CrossRef
2.
go back to reference Huber C, Wächtershäuser G. Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science. 1997;276:245–7.CrossRefPubMed Huber C, Wächtershäuser G. Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science. 1997;276:245–7.CrossRefPubMed
3.
go back to reference Camprubi E, Jordan SF, Vasiliadou R, et al. Iron catalysis at the origin of life. IUBMB Life. 2017;69:373–81.CrossRefPubMed Camprubi E, Jordan SF, Vasiliadou R, et al. Iron catalysis at the origin of life. IUBMB Life. 2017;69:373–81.CrossRefPubMed
4.
go back to reference Ilbert M, Bonnefoy V. Insight into the evolution of the iron oxidation pathways. Biochim Biophys Acta (BBA) Bioenerg. 2013;1827:161–75.CrossRef Ilbert M, Bonnefoy V. Insight into the evolution of the iron oxidation pathways. Biochim Biophys Acta (BBA) Bioenerg. 2013;1827:161–75.CrossRef
6.
go back to reference Mayeur S, Spahis S, Pouliot Y, et al. Lactoferrin, a pleiotropic protein in health and disease. Antioxid Redox Signal. 2016;24:813–36.CrossRefPubMed Mayeur S, Spahis S, Pouliot Y, et al. Lactoferrin, a pleiotropic protein in health and disease. Antioxid Redox Signal. 2016;24:813–36.CrossRefPubMed
7.
go back to reference de Oliveira SC, Bellanger A, Ménard O, et al. Impact of human milk pasteurization on gastric digestion in preterm infants: a randomized controlled trial. Am J Clin Nutr. 2017;105:379–90.CrossRefPubMed de Oliveira SC, Bellanger A, Ménard O, et al. Impact of human milk pasteurization on gastric digestion in preterm infants: a randomized controlled trial. Am J Clin Nutr. 2017;105:379–90.CrossRefPubMed
8.
go back to reference Mastromarino P, Capobianco D, Campagna G, et al. Correlation between lactoferrin and beneficial microbiota in breast milk and infant’s feces. Biometals. 2014;27:1077–86.CrossRefPubMed Mastromarino P, Capobianco D, Campagna G, et al. Correlation between lactoferrin and beneficial microbiota in breast milk and infant’s feces. Biometals. 2014;27:1077–86.CrossRefPubMed
9.
go back to reference Ward PP, Mendoza-Meneses M, Park PW, et al. Stimulus-dependent impairment of the neutrophil oxidative burst response in lactoferrin-deficient mice. Am J Pathol. 2008;172:1019–29.CrossRefPubMedPubMedCentral Ward PP, Mendoza-Meneses M, Park PW, et al. Stimulus-dependent impairment of the neutrophil oxidative burst response in lactoferrin-deficient mice. Am J Pathol. 2008;172:1019–29.CrossRefPubMedPubMedCentral
10.
go back to reference Sia AK, Allred BE, Raymond KN. Siderocalins: siderophore binding proteins evolved for primary pathogen host defense. Curr Opin Chem Biol. 2013;17:150–7.CrossRefPubMed Sia AK, Allred BE, Raymond KN. Siderocalins: siderophore binding proteins evolved for primary pathogen host defense. Curr Opin Chem Biol. 2013;17:150–7.CrossRefPubMed
11.
go back to reference Shields-Cutler RR, Crowley JR, Miller CD, et al. Human metabolome-derived cofactors are required for the antibacterial activity of siderocalin in urine. J Biol Chem. 2016;291:25901–10.CrossRefPubMedPubMedCentral Shields-Cutler RR, Crowley JR, Miller CD, et al. Human metabolome-derived cofactors are required for the antibacterial activity of siderocalin in urine. J Biol Chem. 2016;291:25901–10.CrossRefPubMedPubMedCentral
12.
go back to reference Flo TH, Smith KD, Sato S, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432:917–21.CrossRefPubMed Flo TH, Smith KD, Sato S, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432:917–21.CrossRefPubMed
14.
go back to reference Cramer EP, Dahl SL, Rozell B, et al. Lipocalin-2 from both myeloid cells and the epithelium combats Klebsiella pneumoniae lung infection in mice. Blood. 2017;129:2813–7.CrossRefPubMed Cramer EP, Dahl SL, Rozell B, et al. Lipocalin-2 from both myeloid cells and the epithelium combats Klebsiella pneumoniae lung infection in mice. Blood. 2017;129:2813–7.CrossRefPubMed
15.
go back to reference Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002;110:1037–44.CrossRefPubMedPubMedCentral Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002;110:1037–44.CrossRefPubMedPubMedCentral
16.
go back to reference Kim A, Fung E, Parikh SG, et al. A mouse model of anemia of inflammation: complex pathogenesis with partial dependence on hepcidin. Blood. 2014;123:1129–36.CrossRefPubMed Kim A, Fung E, Parikh SG, et al. A mouse model of anemia of inflammation: complex pathogenesis with partial dependence on hepcidin. Blood. 2014;123:1129–36.CrossRefPubMed
17.
go back to reference Gardenghi S, Renaud TM, Meloni A, et al. Distinct roles for hepcidin and interleukin-6 in the recovery from anemia in mice injected with heat-killed Brucella abortus. Blood. 2014;123:1137–45.CrossRefPubMedPubMedCentral Gardenghi S, Renaud TM, Meloni A, et al. Distinct roles for hepcidin and interleukin-6 in the recovery from anemia in mice injected with heat-killed Brucella abortus. Blood. 2014;123:1137–45.CrossRefPubMedPubMedCentral
19.
go back to reference Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113:1271–6.CrossRefPubMedPubMedCentral Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113:1271–6.CrossRefPubMedPubMedCentral
20.
go back to reference Pietrangelo A, Dierssen U, Valli L, et al. STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology. 2007;132:294–300.CrossRefPubMed Pietrangelo A, Dierssen U, Valli L, et al. STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology. 2007;132:294–300.CrossRefPubMed
21.
go back to reference Verga Falzacappa MV, Vujic SM, Kessler R, et al. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood. 2007;109:353–8.CrossRefPubMed Verga Falzacappa MV, Vujic SM, Kessler R, et al. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood. 2007;109:353–8.CrossRefPubMed
23.
go back to reference Verga Falzacappa MV, Casanovas G, Hentze MW, et al. A bone morphogenetic protein (BMP)-responsive element in the hepcidin promoter controls HFE2-mediated hepatic hepcidin expression and its response to IL-6 in cultured cells. J Mol Med. 2008;86:531–40.CrossRefPubMed Verga Falzacappa MV, Casanovas G, Hentze MW, et al. A bone morphogenetic protein (BMP)-responsive element in the hepcidin promoter controls HFE2-mediated hepatic hepcidin expression and its response to IL-6 in cultured cells. J Mol Med. 2008;86:531–40.CrossRefPubMed
24.
go back to reference Rodriguez R, Jung CL, Gabayan V, et al. Hepcidin induction by pathogens and pathogen-derived molecules is strongly dependent on interleukin-6. Infect Immun. 2014;82:745–52.CrossRefPubMedPubMedCentral Rodriguez R, Jung CL, Gabayan V, et al. Hepcidin induction by pathogens and pathogen-derived molecules is strongly dependent on interleukin-6. Infect Immun. 2014;82:745–52.CrossRefPubMedPubMedCentral
25.
26.
go back to reference Siddique A, Kowdley KV. Review article: the iron overload syndromes. Aliment Pharmacol Ther. 2012;35:876–93.CrossRefPubMed Siddique A, Kowdley KV. Review article: the iron overload syndromes. Aliment Pharmacol Ther. 2012;35:876–93.CrossRefPubMed
27.
go back to reference Pietrangelo A. Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology. 2010;139:393–408 (408 e391–e392).CrossRefPubMed Pietrangelo A. Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology. 2010;139:393–408 (408 e391–e392).CrossRefPubMed
29.
go back to reference Fujita N, Sugimoto R, Takeo M, et al. Hepcidin expression in the liver: relatively low level in patients with chronic hepatitis C. Mol Med. 2007;13:97–104.CrossRefPubMedPubMedCentral Fujita N, Sugimoto R, Takeo M, et al. Hepcidin expression in the liver: relatively low level in patients with chronic hepatitis C. Mol Med. 2007;13:97–104.CrossRefPubMedPubMedCentral
30.
go back to reference de Feo TM, Fargion S, Duca L, et al. Non-transferrin-bound iron in alcohol abusers. Alcohol Clin Exp Res. 2001;25:1494–9.CrossRefPubMed de Feo TM, Fargion S, Duca L, et al. Non-transferrin-bound iron in alcohol abusers. Alcohol Clin Exp Res. 2001;25:1494–9.CrossRefPubMed
31.
go back to reference Oliver JD. Vibrio vulnificus: death on the half shell. A personal journey with the pathogen and its ecology. Microb Ecol. 2013;65:793–9.CrossRefPubMed Oliver JD. Vibrio vulnificus: death on the half shell. A personal journey with the pathogen and its ecology. Microb Ecol. 2013;65:793–9.CrossRefPubMed
32.
go back to reference Barton JC, Acton RT. Hemochromatosis and Vibrio vulnificus wound infections. J Clin Gastroenterol. 2009;43:890–3.CrossRefPubMed Barton JC, Acton RT. Hemochromatosis and Vibrio vulnificus wound infections. J Clin Gastroenterol. 2009;43:890–3.CrossRefPubMed
33.
go back to reference Kuo C-H, Dai Z-K, Wu J-R, et al. Septic arthritis as the initial manifestation of fatal Vibrio vulnificus septicemia in a patient with thalassemia and iron overload. Pediatr Blood Cancer. 2009;53:1156–8.CrossRefPubMed Kuo C-H, Dai Z-K, Wu J-R, et al. Septic arthritis as the initial manifestation of fatal Vibrio vulnificus septicemia in a patient with thalassemia and iron overload. Pediatr Blood Cancer. 2009;53:1156–8.CrossRefPubMed
34.
go back to reference Bergmann TK, Vinding K, Hey H. Multiple hepatic abscesses due to Yersinia enterocolitica infection secondary to primary haemochromatosis. Scand J Gastroenterol. 2001;36:891–5.CrossRefPubMed Bergmann TK, Vinding K, Hey H. Multiple hepatic abscesses due to Yersinia enterocolitica infection secondary to primary haemochromatosis. Scand J Gastroenterol. 2001;36:891–5.CrossRefPubMed
35.
go back to reference Hopfner M, Nitsche R, Rohr A, et al. Yersinia enterocolitica infection with multiple liver abscesses uncovering a primary hemochromatosis. Scand J Gastroenterol. 2001;36:220–4.CrossRefPubMed Hopfner M, Nitsche R, Rohr A, et al. Yersinia enterocolitica infection with multiple liver abscesses uncovering a primary hemochromatosis. Scand J Gastroenterol. 2001;36:220–4.CrossRefPubMed
36.
37.
go back to reference Arezes J, Jung G, Gabayan V, et al. Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus. Cell Host Microbe. 2015;17:47–57.CrossRefPubMedPubMedCentral Arezes J, Jung G, Gabayan V, et al. Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus. Cell Host Microbe. 2015;17:47–57.CrossRefPubMedPubMedCentral
39.
go back to reference Michels KR, Zhang Z, Bettina AM, et al. Hepcidin-mediated iron sequestration protects against bacterial dissemination during pneumonia. JCI Insight. 2017;2:e92002.CrossRefPubMedPubMedCentral Michels KR, Zhang Z, Bettina AM, et al. Hepcidin-mediated iron sequestration protects against bacterial dissemination during pneumonia. JCI Insight. 2017;2:e92002.CrossRefPubMedPubMedCentral
40.
go back to reference Libregts SF, Gutierrez L, de Bruin AM, et al. Chronic IFN-gamma production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis. Blood. 2011;118:2578–88.CrossRefPubMed Libregts SF, Gutierrez L, de Bruin AM, et al. Chronic IFN-gamma production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis. Blood. 2011;118:2578–88.CrossRefPubMed
41.
go back to reference Allen DA, Breen C, Yaqoob MM, et al. Inhibition of CFU-E colony formation in uremic patients with inflammatory disease: role of IFN-gamma and TNF-alpha. J Investig Med. 1999;47:204–11.PubMed Allen DA, Breen C, Yaqoob MM, et al. Inhibition of CFU-E colony formation in uremic patients with inflammatory disease: role of IFN-gamma and TNF-alpha. J Investig Med. 1999;47:204–11.PubMed
42.
go back to reference Arezes J, Nemeth E. Hepcidin and iron disorders: new biology and clinical approaches. Int J Lab Hematol. 2015;37(Suppl 1):92–8.CrossRefPubMed Arezes J, Nemeth E. Hepcidin and iron disorders: new biology and clinical approaches. Int J Lab Hematol. 2015;37(Suppl 1):92–8.CrossRefPubMed
43.
go back to reference Forbes JR, Gros P. Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol. 2001;9:397–403.CrossRefPubMed Forbes JR, Gros P. Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol. 2001;9:397–403.CrossRefPubMed
44.
go back to reference North RJ, LaCourse R, Ryan L, et al. Consequence of Nramp1 deletion to mycobacterium tuberculosis infection in mice. Infect Immun. 1999;67:5811–4.PubMedPubMedCentral North RJ, LaCourse R, Ryan L, et al. Consequence of Nramp1 deletion to mycobacterium tuberculosis infection in mice. Infect Immun. 1999;67:5811–4.PubMedPubMedCentral
45.
go back to reference Yuan L, Ke Z, Guo Y, et al. NRAMP1 D543N and INT4 polymorphisms in susceptibility to pulmonary tuberculosis: a meta-analysis. Infect Genet Evol. 2017;54:91–7.CrossRefPubMed Yuan L, Ke Z, Guo Y, et al. NRAMP1 D543N and INT4 polymorphisms in susceptibility to pulmonary tuberculosis: a meta-analysis. Infect Genet Evol. 2017;54:91–7.CrossRefPubMed
47.
go back to reference Soe-Lin S, Apte SS, Mikhael MR, et al. Both Nramp1 and DMT1 are necessary for efficient macrophage iron recycling. Exp Hematol. 2010;38:609–17.CrossRefPubMed Soe-Lin S, Apte SS, Mikhael MR, et al. Both Nramp1 and DMT1 are necessary for efficient macrophage iron recycling. Exp Hematol. 2010;38:609–17.CrossRefPubMed
49.
50.
go back to reference Chlosta S, Fishman DS, Harrington L, et al. The iron efflux protein ferroportin regulates the intracellular growth of Salmonella enterica. Infect Immun. 2006;74:3065–7.CrossRefPubMedPubMedCentral Chlosta S, Fishman DS, Harrington L, et al. The iron efflux protein ferroportin regulates the intracellular growth of Salmonella enterica. Infect Immun. 2006;74:3065–7.CrossRefPubMedPubMedCentral
51.
go back to reference Willemetz A, Beatty S, Richer E, et al. Iron- and hepcidin-independent downregulation of the iron exporter ferroportin in macrophages during salmonella infection. Front Immunol. 2017;8:498.CrossRefPubMedPubMedCentral Willemetz A, Beatty S, Richer E, et al. Iron- and hepcidin-independent downregulation of the iron exporter ferroportin in macrophages during salmonella infection. Front Immunol. 2017;8:498.CrossRefPubMedPubMedCentral
52.
53.
go back to reference Bullock GC, Delehanty LL, Talbot AL, et al. Iron control of erythroid development by a novel aconitase-associated regulatory pathway. Blood. 2010;116:97–108.CrossRefPubMedPubMedCentral Bullock GC, Delehanty LL, Talbot AL, et al. Iron control of erythroid development by a novel aconitase-associated regulatory pathway. Blood. 2010;116:97–108.CrossRefPubMedPubMedCentral
54.
go back to reference Hayden SJ, Albert TJ, Watkins TR, et al. Anemia in critical illness: insights into etiology, consequences, and management. Am J Respir Crit Care Med. 2012;185:1049–57.CrossRefPubMedPubMedCentral Hayden SJ, Albert TJ, Watkins TR, et al. Anemia in critical illness: insights into etiology, consequences, and management. Am J Respir Crit Care Med. 2012;185:1049–57.CrossRefPubMedPubMedCentral
55.
go back to reference Means RT Jr. Pathogenesis of the anemia of chronic disease: a cytokine-mediated anemia. Stem Cells. 1995;13:32–7.CrossRefPubMed Means RT Jr. Pathogenesis of the anemia of chronic disease: a cytokine-mediated anemia. Stem Cells. 1995;13:32–7.CrossRefPubMed
Metadata
Title
Iron and infection
Author
Tomas Ganz
Publication date
01-01-2018
Publisher
Springer Japan
Published in
International Journal of Hematology / Issue 1/2018
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-017-2366-2

Other articles of this Issue 1/2018

International Journal of Hematology 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine