Skip to main content
Top
Published in: International Journal of Hematology 2/2017

01-08-2017 | Original Article

Exome sequencing for simultaneous mutation screening in children with hemophagocytic lymphohistiocytosis

Authors: Ekchol Mukda, Objoon Trachoo, Ekawat Pasomsub, Rawiphorn Tiyasirichokchai, Nareenart Iemwimangsa, Darintr Sosothikul, Wasun Chantratita, Samart Pakakasama

Published in: International Journal of Hematology | Issue 2/2017

Login to get access

Abstract

In the present study, we used exome sequencing to analyze PRF1, UNC13D, STX11, and STXBP2, as well as genes associated with primary immunodeficiency disease (RAB27A, LYST, AP3B1, SH2D1A, ITK, CD27, XIAP, and MAGT1) in Thai children with hemophagocytic lymphohistiocytosis (HLH). We performed mutation analysis of HLH-associated genes in 25 Thai children using an exome sequencing method. Genetic variations found within these target genes were compared to exome sequencing data from 133 healthy individuals. Variants identified with minor allele frequencies <5% and novel mutations were confirmed using Sanger sequencing. Exome sequencing data revealed 101 non-synonymous single nucleotide polymorphisms (SNPs) in all subjects. These SNPs were classified as pathogenic (n = 1), likely pathogenic (n = 16), variant of unknown significance (n = 12), or benign variant (n = 72). Homozygous, compound heterozygous, and double-gene heterozygous variants, involving mutations in PRF1 (n = 3), UNC13D (n = 2), STXBP2 (n = 3), LYST (n = 3), XIAP (n = 2), AP3B1 (n = 1), RAB27A (n = 1), and MAGT1 (n = 1), were demonstrated in 12 patients. Novel mutations were found in most patients in this study. In conclusion, exome sequencing demonstrated the ability to identify rare genetic variants in HLH patients. This method is useful in the detection of mutations in multi-gene associated diseases.
Literature
1.
go back to reference Arico M, Janka G, Fischer A, Henter JI, Blanche S, Elinder G, et al. Hemophagocytic lymphohistiocytosis. Report of 122 children from the International Registry. FHL Study Group of the Histiocyte Society. Leukemia. 1996;10:197–203.PubMed Arico M, Janka G, Fischer A, Henter JI, Blanche S, Elinder G, et al. Hemophagocytic lymphohistiocytosis. Report of 122 children from the International Registry. FHL Study Group of the Histiocyte Society. Leukemia. 1996;10:197–203.PubMed
2.
go back to reference Flavia GNR, Annette SK. Hemophagocytic lymphohistiocytosis: an update on diagnosis and pathogenesis. Am J Clin Patho. 2013;139:713–27.CrossRef Flavia GNR, Annette SK. Hemophagocytic lymphohistiocytosis: an update on diagnosis and pathogenesis. Am J Clin Patho. 2013;139:713–27.CrossRef
3.
go back to reference Horne A, Janka G, Egeler MR, Gadner H, Imashuku S, Ladisch S, et al. Haematopoietic stem cell transplantation in haemophagocytic lymphohistiocytosis. Br J Haematol. 2005;129:622–30.CrossRefPubMed Horne A, Janka G, Egeler MR, Gadner H, Imashuku S, Ladisch S, et al. Haematopoietic stem cell transplantation in haemophagocytic lymphohistiocytosis. Br J Haematol. 2005;129:622–30.CrossRefPubMed
4.
go back to reference Chandrakasan S, Filipovich AH. Hemaphagocytic lymphohistiocytosis: advance in pathophysiology, diagnosis, and treatment. J Pediatr. 2013;153:1253–9.CrossRef Chandrakasan S, Filipovich AH. Hemaphagocytic lymphohistiocytosis: advance in pathophysiology, diagnosis, and treatment. J Pediatr. 2013;153:1253–9.CrossRef
5.
go back to reference Henter JL, Horne A, Arico M, Egeler RM, Filipovich AH, Imashuku S, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48:124–31.CrossRefPubMed Henter JL, Horne A, Arico M, Egeler RM, Filipovich AH, Imashuku S, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48:124–31.CrossRefPubMed
6.
go back to reference Ohadi M, Lalloz MR, Sham P, Zhao J, Dearlove AM, Shiach C, et al. Locallization of gene for familial hemophagocytic lymphohistiocytosis at chromosome 9q-21.3-22 by homozygosity mapping. Am J Hum Genet. 1999;64:165–71.CrossRefPubMedPubMedCentral Ohadi M, Lalloz MR, Sham P, Zhao J, Dearlove AM, Shiach C, et al. Locallization of gene for familial hemophagocytic lymphohistiocytosis at chromosome 9q-21.3-22 by homozygosity mapping. Am J Hum Genet. 1999;64:165–71.CrossRefPubMedPubMedCentral
7.
go back to reference Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, Mathew PA, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999;286:1957–9.CrossRefPubMed Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, Mathew PA, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999;286:1957–9.CrossRefPubMed
8.
go back to reference Feldmann J, Callebaut I, Rapaso G, Certain S, Bacq D, Dumont C, et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell. 2003;115:461–73.CrossRefPubMed Feldmann J, Callebaut I, Rapaso G, Certain S, Bacq D, Dumont C, et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell. 2003;115:461–73.CrossRefPubMed
9.
go back to reference Zur Stadt U, Schmidt S, Kasper B, Beutel K, Diler AS, Henter JI, et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet. 2005;14:827–34.CrossRefPubMed Zur Stadt U, Schmidt S, Kasper B, Beutel K, Diler AS, Henter JI, et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet. 2005;14:827–34.CrossRefPubMed
10.
go back to reference Zur Stadt U, Rohr J, Seifert W, Seifert W, Koch F, Grieve S, et al. Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin11. Am J Hum Genet. 2009;85:482–92.CrossRefPubMedPubMedCentral Zur Stadt U, Rohr J, Seifert W, Seifert W, Koch F, Grieve S, et al. Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin11. Am J Hum Genet. 2009;85:482–92.CrossRefPubMedPubMedCentral
11.
go back to reference Stinchcombe J, Bossi G, Griffiths GM. Linking albinism and immunity: the secretory lysosomes. Sciences. 2004;305:55–9.CrossRef Stinchcombe J, Bossi G, Griffiths GM. Linking albinism and immunity: the secretory lysosomes. Sciences. 2004;305:55–9.CrossRef
12.
13.
go back to reference Zhang K, Chandrakasan S, Chapman H, Valencia A, Husami A, Kissell D, et al. Synergistic defects of different molecules in the cytotoxic pathway lead to clinical hemophagocytic lymphohistiocytosis. Blood. 2014;124(8):1331–4.CrossRefPubMedPubMedCentral Zhang K, Chandrakasan S, Chapman H, Valencia A, Husami A, Kissell D, et al. Synergistic defects of different molecules in the cytotoxic pathway lead to clinical hemophagocytic lymphohistiocytosis. Blood. 2014;124(8):1331–4.CrossRefPubMedPubMedCentral
14.
go back to reference Zur Stadt U, Beutel K, Kolberg S, Schneppenhein R, Kabisch H, Janka G, et al. Mutation spectrum in children with primary hemophagocytic lymphohistiocytosis: molecular and functional analyses of PRF1, UNC13D, STX11, and RAB27A. Hum Mutat. 2006;27:62–8.CrossRefPubMed Zur Stadt U, Beutel K, Kolberg S, Schneppenhein R, Kabisch H, Janka G, et al. Mutation spectrum in children with primary hemophagocytic lymphohistiocytosis: molecular and functional analyses of PRF1, UNC13D, STX11, and RAB27A. Hum Mutat. 2006;27:62–8.CrossRefPubMed
15.
go back to reference Trizzino A, Stadtzur U, Ueda I, Risma K, Janka G, Ishii E, et al. Genotype-phenotype study of familial haemophagocytic lymphohistiocytosis due to perforin mutations. J Med Genet. 2008;45:15–21.CrossRefPubMed Trizzino A, Stadtzur U, Ueda I, Risma K, Janka G, Ishii E, et al. Genotype-phenotype study of familial haemophagocytic lymphohistiocytosis due to perforin mutations. J Med Genet. 2008;45:15–21.CrossRefPubMed
16.
go back to reference Buermans HP, Den Dunnen JT. Next generation sequencing technology: advances and applications. Biochem Biophys Acta. 2014;1842:1932–41.PubMed Buermans HP, Den Dunnen JT. Next generation sequencing technology: advances and applications. Biochem Biophys Acta. 2014;1842:1932–41.PubMed
17.
go back to reference Yaping Y, Donna MM, Jeffrey GR, Matthew NB, Alecia W, Patricia AW, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369:1502–11.CrossRef Yaping Y, Donna MM, Jeffrey GR, Matthew NB, Alecia W, Patricia AW, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369:1502–11.CrossRef
18.
go back to reference Jorge O, Luis N, Isabel F, Ricardo T, Manuel MP, Ana MF, et al. New splicing mutation in the choline kinase beta (CHKB) gene causing a muscular dystrophy detected by whole-exome sequencing. J Hum Genet. 2015;60:305–12.CrossRef Jorge O, Luis N, Isabel F, Ricardo T, Manuel MP, Ana MF, et al. New splicing mutation in the choline kinase beta (CHKB) gene causing a muscular dystrophy detected by whole-exome sequencing. J Hum Genet. 2015;60:305–12.CrossRef
19.
go back to reference Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucl Acids Res. 2003;3:3812–4.CrossRef Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucl Acids Res. 2003;3:3812–4.CrossRef
20.
go back to reference Adzhubei IA, Schmidt S, Peshkin L, Ramensky EV, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.CrossRefPubMedPubMedCentral Adzhubei IA, Schmidt S, Peshkin L, Ramensky EV, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.CrossRefPubMedPubMedCentral
21.
go back to reference Ng SB, Buckingham KJ, Lee C, Bigham WA, Tabor KH, Dent MK, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42:30–5.CrossRefPubMed Ng SB, Buckingham KJ, Lee C, Bigham WA, Tabor KH, Dent MK, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42:30–5.CrossRefPubMed
22.
go back to reference Dorschner OM, Mmendola ML, Turner HE, Robertson DP, Shirts HB, Gellego JC, et al. Actionable, pathogenic incidental findings in 1000 participants’exomes. The Am J Hum Genet. 2013;93:631–40.CrossRefPubMed Dorschner OM, Mmendola ML, Turner HE, Robertson DP, Shirts HB, Gellego JC, et al. Actionable, pathogenic incidental findings in 1000 participants’exomes. The Am J Hum Genet. 2013;93:631–40.CrossRefPubMed
23.
go back to reference Sue R, Nazneen A, Sherri B, David B, Soma D, Julie GF, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17:405–24.CrossRef Sue R, Nazneen A, Sherri B, David B, Soma D, Julie GF, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17:405–24.CrossRef
24.
go back to reference Marjorie C, Mickael MM, Agathe B, Nizar M, Capucine P, Catherine S, et al. Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest. 2009;119:3765–73.CrossRef Marjorie C, Mickael MM, Agathe B, Nizar M, Capucine P, Catherine S, et al. Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest. 2009;119:3765–73.CrossRef
25.
go back to reference Goransdotter EK, Fadeel B, Nilsson-Ardnor S, Soderhall C, Samuelsson A, Jakga G, et al. Sprectrum of perforin gene mutation in familial hemophagocytic lymphohistiocytosis. Am J Hum Genet. 2001;68:590–7.CrossRef Goransdotter EK, Fadeel B, Nilsson-Ardnor S, Soderhall C, Samuelsson A, Jakga G, et al. Sprectrum of perforin gene mutation in familial hemophagocytic lymphohistiocytosis. Am J Hum Genet. 2001;68:590–7.CrossRef
26.
go back to reference Mollerran S, Villanueva J, Sumegi J, Zhang K, Kogawa K, Davis J, et al. Characterization of diverse PRF1 mutations leading to decreased natural killer cell activity in North American families with haemophagocytic lymphohistiocytosis. J Med Genet. 2004;41:137–44.CrossRef Mollerran S, Villanueva J, Sumegi J, Zhang K, Kogawa K, Davis J, et al. Characterization of diverse PRF1 mutations leading to decreased natural killer cell activity in North American families with haemophagocytic lymphohistiocytosis. J Med Genet. 2004;41:137–44.CrossRef
27.
go back to reference Yamamoto K, Ishii E, Sako M, Ohga S, Furono K, Suzuki N, et al. Identification of novel MUNC13-4 mutations in familial haemophagocytic lymphohistiocytosis and functional analysis of MUNC13-4-deficient cytotoxic T lymphocytes. J Med Genet. 2004;41:763–7.CrossRefPubMedPubMedCentral Yamamoto K, Ishii E, Sako M, Ohga S, Furono K, Suzuki N, et al. Identification of novel MUNC13-4 mutations in familial haemophagocytic lymphohistiocytosis and functional analysis of MUNC13-4-deficient cytotoxic T lymphocytes. J Med Genet. 2004;41:763–7.CrossRefPubMedPubMedCentral
28.
go back to reference Nagai K, Yamamoto K, Fujiwara H, An J, Ochi T, Suemori K, et al. Subtype of familial hemophagocytic lymphohistiocytosis in Japan based on genetic and functional analyses of cytotoxic T lymphocytes. PLoS ONE. 2010;5(11):e14173.CrossRefPubMedPubMedCentral Nagai K, Yamamoto K, Fujiwara H, An J, Ochi T, Suemori K, et al. Subtype of familial hemophagocytic lymphohistiocytosis in Japan based on genetic and functional analyses of cytotoxic T lymphocytes. PLoS ONE. 2010;5(11):e14173.CrossRefPubMedPubMedCentral
29.
go back to reference Hoi SY, Hee-Jin K, Keon-Hee Y, Ki-Woong S, Hong-Hoe K, Hyoung JK, et al. UNC13D is the predominant causative gene with recurrent splicing mutations in Korean patients with familial hemophagocytic lymphohistiocytosis. Haematologiga. 2010;95:622–6.CrossRef Hoi SY, Hee-Jin K, Keon-Hee Y, Ki-Woong S, Hong-Hoe K, Hyoung JK, et al. UNC13D is the predominant causative gene with recurrent splicing mutations in Korean patients with familial hemophagocytic lymphohistiocytosis. Haematologiga. 2010;95:622–6.CrossRef
30.
go back to reference Koh K-N, Im HJ, Chung N-G, Cho B, Kang HJ, Shin HY, et al. Clinical features, genetic, and outcome of pediatric patients with hemophagocytic lymphohistiocytosis in Korea: report of a nationwide survey from Korea histiocytosis working party. Eur J Haematol. 2014;94:51–9.CrossRefPubMed Koh K-N, Im HJ, Chung N-G, Cho B, Kang HJ, Shin HY, et al. Clinical features, genetic, and outcome of pediatric patients with hemophagocytic lymphohistiocytosis in Korea: report of a nationwide survey from Korea histiocytosis working party. Eur J Haematol. 2014;94:51–9.CrossRefPubMed
31.
go back to reference Ueda I, Kurokawa Y, Koike K, Ito S, Sakata A, Matsumora T, et al. Late-onset cases of familial hemophagocytic lymphocytic histiocytosis with missense perforin gene mutations. Am J Hematol. 2007;82:427–32.CrossRefPubMed Ueda I, Kurokawa Y, Koike K, Ito S, Sakata A, Matsumora T, et al. Late-onset cases of familial hemophagocytic lymphocytic histiocytosis with missense perforin gene mutations. Am J Hematol. 2007;82:427–32.CrossRefPubMed
32.
go back to reference Ueda I, Kohdera U, Hibi S, Inaba T, Yamamoto K, Sugimoto T, et al. A novel perforin gene mutation in Japanese family with hemophagocytic lymphohistiocytosis. Int J Hematol. 2006;83:51–4.CrossRefPubMed Ueda I, Kohdera U, Hibi S, Inaba T, Yamamoto K, Sugimoto T, et al. A novel perforin gene mutation in Japanese family with hemophagocytic lymphohistiocytosis. Int J Hematol. 2006;83:51–4.CrossRefPubMed
33.
go back to reference Romensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucl Acids Res. 2002;30:3894–900.CrossRef Romensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucl Acids Res. 2002;30:3894–900.CrossRef
34.
go back to reference Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001;11:861–74.CrossRef Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001;11:861–74.CrossRef
35.
go back to reference Ueda I, Ishii E, Morimoto A, Ohga S, Sako M, Imashuku S. Correlation between phenotypic heterogeneity and gene mutational characteristics in familial hemophagocytic lymphohistiocytosis (FHL). Pediatr Blood Cancer. 2006;46:482–8.CrossRefPubMed Ueda I, Ishii E, Morimoto A, Ohga S, Sako M, Imashuku S. Correlation between phenotypic heterogeneity and gene mutational characteristics in familial hemophagocytic lymphohistiocytosis (FHL). Pediatr Blood Cancer. 2006;46:482–8.CrossRefPubMed
36.
go back to reference Rudd E, Bryceson YT, Zheng C, Zheng C, Edner J, Wood SM, et al. Spectrum, and clinical and functional implications of UNC13D mutations in familial haemophagocytic lymphohistiocytosis. J Med Genet. 2008;45:134–41.CrossRefPubMed Rudd E, Bryceson YT, Zheng C, Zheng C, Edner J, Wood SM, et al. Spectrum, and clinical and functional implications of UNC13D mutations in familial haemophagocytic lymphohistiocytosis. J Med Genet. 2008;45:134–41.CrossRefPubMed
37.
go back to reference Prekeris R, Klumperman J, Scheller RH. Syntaxin 11 is an atypical SNARE abundant in the immune system. Eur J Cell Biol. 2000;79:771–80.CrossRefPubMed Prekeris R, Klumperman J, Scheller RH. Syntaxin 11 is an atypical SNARE abundant in the immune system. Eur J Cell Biol. 2000;79:771–80.CrossRefPubMed
38.
go back to reference Anna Carin H, Kim GR, Eva R, Chengyun Z, Yasser W, Zakia A-L, et al. Characterization of PRF1, STX11, and UNC13D genotype-phenotype correlations in familial haemophagocytic lymphohistiocytosis. Br J Haematol. 2008;143:75–83.CrossRef Anna Carin H, Kim GR, Eva R, Chengyun Z, Yasser W, Zakia A-L, et al. Characterization of PRF1, STX11, and UNC13D genotype-phenotype correlations in familial haemophagocytic lymphohistiocytosis. Br J Haematol. 2008;143:75–83.CrossRef
39.
go back to reference Jessen B, Maul-Pavicic A, Ufheil H, Vraetz T, Enders A, Lehmberg K, et al. Subtle differences in CTL cytotoxic determine susceptibility to hemophagocytic lymphohistiocytosis in mice and human with Chediak-Higashi syndrome. Blood. 2011;118:4620–9.CrossRefPubMed Jessen B, Maul-Pavicic A, Ufheil H, Vraetz T, Enders A, Lehmberg K, et al. Subtle differences in CTL cytotoxic determine susceptibility to hemophagocytic lymphohistiocytosis in mice and human with Chediak-Higashi syndrome. Blood. 2011;118:4620–9.CrossRefPubMed
40.
go back to reference Gao L, Zhu L, Huang L, Zhou J. Synergistic defects of UNC13D and AP3B1 leading to adult hemophagocytic lymphohistiocytosis. Int J Hematol. 2015;102:488–92.CrossRefPubMed Gao L, Zhu L, Huang L, Zhou J. Synergistic defects of UNC13D and AP3B1 leading to adult hemophagocytic lymphohistiocytosis. Int J Hematol. 2015;102:488–92.CrossRefPubMed
Metadata
Title
Exome sequencing for simultaneous mutation screening in children with hemophagocytic lymphohistiocytosis
Authors
Ekchol Mukda
Objoon Trachoo
Ekawat Pasomsub
Rawiphorn Tiyasirichokchai
Nareenart Iemwimangsa
Darintr Sosothikul
Wasun Chantratita
Samart Pakakasama
Publication date
01-08-2017
Publisher
Springer Japan
Published in
International Journal of Hematology / Issue 2/2017
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-017-2223-3

Other articles of this Issue 2/2017

International Journal of Hematology 2/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine