Skip to main content
Top
Published in: International Journal of Hematology 5/2015

01-11-2015 | Original Article

Clinical and genetic features of dyskeratosis congenita, cryptic dyskeratosis congenita, and Hoyeraal-Hreidarsson syndrome in Japan

Authors: Hiroki Yamaguchi, Hirotoshi Sakaguchi, Kenichi Yoshida, Miharu Yabe, Hiromasa Yabe, Yusuke Okuno, Hideki Muramatsu, Yoshiyuki Takahashi, Shunsuke Yui, Yuichi Shiraishi, Kenichi Chiba, Hiroko Tanaka, Satoru Miyano, Koiti Inokuchi, Etsuro Ito, Seishi Ogawa, Seiji Kojima

Published in: International Journal of Hematology | Issue 5/2015

Login to get access

Abstract

Dyskeratosis congenita (DKC) is an inherited bone marrow failure (BMF) syndrome typified by reticulated skin pigmentation, nail dystrophy, and mucosal leukoplakia. Hoyeraal-Hreidarsson syndrome (HHS) is considered to be a severe form of DKC. Unconventional forms of DKC, which develop slowly in adulthood but without the physical anomalies characteristic of DKC (cryptic DKC), have been reported. Clinical and genetic features of DKC have been investigated in Caucasian, Black, and Hispanic populations, but not in Asian populations. The present study aimed to determine the clinical and genetic features of DKC, HHS, and cryptic DKC among Japanese patients. We analyzed 16 patients diagnosed with DKC, three patients with HHS, and 15 patients with cryptic DKC. We found that platelet count was significantly more depressed than neutrophil count or hemoglobin value in DKC patients, and identified DKC patients with large deletions in the telomerase reverse transcriptase and cryptic DKC patients with RTEL1 mutations on both alleles. This led to some patients previously considered to have unclassifiable BMF being diagnosed with cDKC through identification of new gene mutations. It thus seems important from a clinical viewpoint to re-examine the clinical characteristics, frequency of genetic mutations, and treatment efficacy in DKC, HHS, and cDKC.
Literature
4.
go back to reference Sakaguchi H, Nakanishi K, Kojima S. Inherited bone marrow failure syndromes in 2012. Int J Hematol. 2013;97:20–9.CrossRefPubMed Sakaguchi H, Nakanishi K, Kojima S. Inherited bone marrow failure syndromes in 2012. Int J Hematol. 2013;97:20–9.CrossRefPubMed
5.
go back to reference Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet. 1998;19(1):32–8.CrossRefPubMed Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet. 1998;19(1):32–8.CrossRefPubMed
6.
go back to reference Knight SW, Heiss NS, Vulliamy TJ, Greschner S, Stavrides G, Pai GS, et al. X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene. Am J Hum Genet. 1999;65(1):50–8.PubMedCentralCrossRefPubMed Knight SW, Heiss NS, Vulliamy TJ, Greschner S, Stavrides G, Pai GS, et al. X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene. Am J Hum Genet. 1999;65(1):50–8.PubMedCentralCrossRefPubMed
7.
go back to reference Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature. 2001;413(6854):432–5.CrossRefPubMed Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature. 2001;413(6854):432–5.CrossRefPubMed
8.
go back to reference Marrone A, Walne A, Tamary H, Masunari Y, Kirwan M, Beswick R, et al. Telomerase reverse transcriptase homozygous mutations in autosomal recessive dyskeratosis congenital and Hoyeraal-Hreidarsson syndrome. Blood. 2007;110(13):4198–205.PubMedCentralCrossRefPubMed Marrone A, Walne A, Tamary H, Masunari Y, Kirwan M, Beswick R, et al. Telomerase reverse transcriptase homozygous mutations in autosomal recessive dyskeratosis congenital and Hoyeraal-Hreidarsson syndrome. Blood. 2007;110(13):4198–205.PubMedCentralCrossRefPubMed
9.
go back to reference Walne AJ, Vulliamy T, Marrone A, Beswick R, Kirwan M, Masunari Y, et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet. 2007;16(13):1619–29.PubMedCentralCrossRefPubMed Walne AJ, Vulliamy T, Marrone A, Beswick R, Kirwan M, Masunari Y, et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet. 2007;16(13):1619–29.PubMedCentralCrossRefPubMed
10.
go back to reference Vulliamy T, Beswick R, Kirwan M, Marrone A, Digweed M, Walne A, et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci USA. 2008;105(23):8073–8.PubMedCentralCrossRefPubMed Vulliamy T, Beswick R, Kirwan M, Marrone A, Digweed M, Walne A, et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci USA. 2008;105(23):8073–8.PubMedCentralCrossRefPubMed
11.
go back to reference Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet. 2008;82(2):501–9.PubMedCentralCrossRefPubMed Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet. 2008;82(2):501–9.PubMedCentralCrossRefPubMed
12.
go back to reference Walne AJ, Vulliamy T, Beswick R, Kirwan M, Dokal I. TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood. 2008;112(9):3594–600.PubMedCentralCrossRefPubMed Walne AJ, Vulliamy T, Beswick R, Kirwan M, Dokal I. TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood. 2008;112(9):3594–600.PubMedCentralCrossRefPubMed
13.
go back to reference Zhong F, Savage SA, Shkreli M, Giri N, Jessop L, Myers T, Chen R, et al. Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev. 2011;25(1):11–6.PubMedCentralCrossRefPubMed Zhong F, Savage SA, Shkreli M, Giri N, Jessop L, Myers T, Chen R, et al. Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev. 2011;25(1):11–6.PubMedCentralCrossRefPubMed
14.
go back to reference Walne AJ, Vulliamy T, Kirwan M, Plagnol V, Dokal I. Constitutional mutations in RTEL1 cause severe dyskeratosis congenita. Am J Hum Genet. 2013;92(3):448–53.PubMedCentralCrossRefPubMed Walne AJ, Vulliamy T, Kirwan M, Plagnol V, Dokal I. Constitutional mutations in RTEL1 cause severe dyskeratosis congenita. Am J Hum Genet. 2013;92(3):448–53.PubMedCentralCrossRefPubMed
15.
go back to reference Le Guen T, Jullien L, Touzot F, Schertzer M, Gaillard L, Perderiset M, et al. Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability. Hum Mol Genet. 2013;22(16):3239–49.CrossRefPubMed Le Guen T, Jullien L, Touzot F, Schertzer M, Gaillard L, Perderiset M, et al. Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability. Hum Mol Genet. 2013;22(16):3239–49.CrossRefPubMed
16.
go back to reference Ballew BJ, Yeager M, Jacobs K, Giri N, Boland J, Burdett L, et al. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita. Hum Genet. 2013;132(4):473–80.PubMedCentralCrossRefPubMed Ballew BJ, Yeager M, Jacobs K, Giri N, Boland J, Burdett L, et al. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita. Hum Genet. 2013;132(4):473–80.PubMedCentralCrossRefPubMed
17.
go back to reference Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, Rao PH, et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science. 2003;299(5604):259–62.CrossRefPubMed Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, Rao PH, et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science. 2003;299(5604):259–62.CrossRefPubMed
18.
go back to reference Yamaguchi H. Mutations of telomerase complex genes linked to bone marrow failures. J Nippon Med Sch. 2007;74(3):202–9.CrossRefPubMed Yamaguchi H. Mutations of telomerase complex genes linked to bone marrow failures. J Nippon Med Sch. 2007;74(3):202–9.CrossRefPubMed
19.
go back to reference Fogarty PF, Yamaguchi H, Wiestner A, Baerlocher GM, Sloand E, Zeng WS, et al. Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet. 2003;362:1628–30.CrossRefPubMed Fogarty PF, Yamaguchi H, Wiestner A, Baerlocher GM, Sloand E, Zeng WS, et al. Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet. 2003;362:1628–30.CrossRefPubMed
20.
go back to reference Yamaguchi H, Baerlocher GM, Lansdorp PM, Chanock SJ, Nunez O, Sloand E, et al. Mutations of the human telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic syndrome. Blood. 2003;102(3):916–8.CrossRefPubMed Yamaguchi H, Baerlocher GM, Lansdorp PM, Chanock SJ, Nunez O, Sloand E, et al. Mutations of the human telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic syndrome. Blood. 2003;102(3):916–8.CrossRefPubMed
21.
go back to reference Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 2005;352(14):1413–24.CrossRefPubMed Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 2005;352(14):1413–24.CrossRefPubMed
22.
go back to reference Vulliamy TJ, Walne A, Baskaradas A, Mason PJ, Marrone A, Dokal I. Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol Dis. 2005;34(3):257–63.CrossRefPubMed Vulliamy TJ, Walne A, Baskaradas A, Mason PJ, Marrone A, Dokal I. Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol Dis. 2005;34(3):257–63.CrossRefPubMed
23.
go back to reference Liang J, Yagasaki H, Kamachi Y, Hama A, Matsumoto K, Kato K, et al. Mutations in telomerase catalytic protein in Japanese children with aplastic anemia. Haematologica. 2006;91(5):656–8.PubMed Liang J, Yagasaki H, Kamachi Y, Hama A, Matsumoto K, Kato K, et al. Mutations in telomerase catalytic protein in Japanese children with aplastic anemia. Haematologica. 2006;91(5):656–8.PubMed
24.
go back to reference Takeuchi J, Ly H, Yamaguchi H, Carroll KA, Kosaka F, Sawaguchi K, et al. Identification and functional characterization of novel telomerase variant alleles in Japanese patients with bone-marrow failure syndromes. Blood Cells Mol Dis. 2008;40(2):185–91.CrossRefPubMed Takeuchi J, Ly H, Yamaguchi H, Carroll KA, Kosaka F, Sawaguchi K, et al. Identification and functional characterization of novel telomerase variant alleles in Japanese patients with bone-marrow failure syndromes. Blood Cells Mol Dis. 2008;40(2):185–91.CrossRefPubMed
25.
go back to reference Yamaguchi H, Inokuchi K, Takeuchi J, Tamai H, Mitamura Y, Kosaka F, et al. Identification of TINF2 gene mutations in adult Japanese patients with acquired bone marrow failure syndromes. Br J Haematol. 2010;150(6):725–7.CrossRefPubMed Yamaguchi H, Inokuchi K, Takeuchi J, Tamai H, Mitamura Y, Kosaka F, et al. Identification of TINF2 gene mutations in adult Japanese patients with acquired bone marrow failure syndromes. Br J Haematol. 2010;150(6):725–7.CrossRefPubMed
26.
go back to reference Ballew BJ, Savage SA. Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol. 2013;6(3):327–37.CrossRefPubMed Ballew BJ, Savage SA. Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol. 2013;6(3):327–37.CrossRefPubMed
27.
go back to reference Kunishima S, Okuno Y, Yoshida K, Shiraishi Y, Sanada M, Muramatsu H, et al. ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum Genet. 2013;92(3):431–8.PubMedCentralCrossRefPubMed Kunishima S, Okuno Y, Yoshida K, Shiraishi Y, Sanada M, Muramatsu H, et al. ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum Genet. 2013;92(3):431–8.PubMedCentralCrossRefPubMed
28.
go back to reference Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A, et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet. 2013;45(11):1293–9.CrossRefPubMed Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A, et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet. 2013;45(11):1293–9.CrossRefPubMed
Metadata
Title
Clinical and genetic features of dyskeratosis congenita, cryptic dyskeratosis congenita, and Hoyeraal-Hreidarsson syndrome in Japan
Authors
Hiroki Yamaguchi
Hirotoshi Sakaguchi
Kenichi Yoshida
Miharu Yabe
Hiromasa Yabe
Yusuke Okuno
Hideki Muramatsu
Yoshiyuki Takahashi
Shunsuke Yui
Yuichi Shiraishi
Kenichi Chiba
Hiroko Tanaka
Satoru Miyano
Koiti Inokuchi
Etsuro Ito
Seishi Ogawa
Seiji Kojima
Publication date
01-11-2015
Publisher
Springer Japan
Published in
International Journal of Hematology / Issue 5/2015
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-015-1861-6

Other articles of this Issue 5/2015

International Journal of Hematology 5/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine