Skip to main content
Top
Published in: International Journal of Hematology 2/2012

01-02-2012 | Original Article

The effect of iron overload and chelation on erythroid differentiation

Authors: Kazuki Taoka, Keiki Kumano, Fumihiko Nakamura, Masataka Hosoi, Susumu Goyama, Yoichi Imai, Akira Hangaishi, Mineo Kurokawa

Published in: International Journal of Hematology | Issue 2/2012

Login to get access

Abstract

We investigated the mechanisms of hematopoietic disorders caused by iron overload and chelation, in particular, the inhibition of erythroblast differentiation. Murine c-kit+ progenitor cells or human CD34+ peripheral blood hematopoietic progenitors were differentiated in vitro to the erythroid lineage with free iron and/or an iron chelator. Under iron overload, formation of erythroid burst-forming unit colonies and differentiation to mature erythroblasts were significantly suppressed; these effects were canceled by iron chelation with deferoxamine (DFO). Moreover, excessive iron burden promoted apoptosis in immature erythroblasts by elevating intracellular reactive oxygen species (ROS). Interestingly, both DFO and a potent anti-oxidant agent reduced intracellular ROS levels and suppressed apoptosis, thus restoring differentiation to mature erythroblasts. Accordingly, intracellular ROS may represent a new therapeutic target in the treatment of iron overload.
Literature
1.
go back to reference Takatoku M, Uchiyama T, Okamoto S, Kanakura Y, Sawada K, Tomonaga M, et al. Retrospective nationwide survey of Japanese patients with transfusion-dependent MDS and aplastic anemia highlights the negative impact of iron overload on morbidity/mortality. Eur J Haematol. 2007;78:487–94.PubMedCrossRef Takatoku M, Uchiyama T, Okamoto S, Kanakura Y, Sawada K, Tomonaga M, et al. Retrospective nationwide survey of Japanese patients with transfusion-dependent MDS and aplastic anemia highlights the negative impact of iron overload on morbidity/mortality. Eur J Haematol. 2007;78:487–94.PubMedCrossRef
2.
go back to reference Cazzola M, Malcovati L. Myelodysplastic syndromes—coping with ineffective hematopoiesis. N Engl J Med. 2005;352:536–8.PubMedCrossRef Cazzola M, Malcovati L. Myelodysplastic syndromes—coping with ineffective hematopoiesis. N Engl J Med. 2005;352:536–8.PubMedCrossRef
3.
go back to reference Suzuki T, Tomonaga M, Miyazaki Y, Nakao S, Ohyashiki K, Matsumura I, et al. Japanese epidemiological survey with consensus statement on Japanese guidelines for treatment of iron overload in bone marrow failure syndromes. Int J Hematol. 2008;88:30–5.PubMedCrossRef Suzuki T, Tomonaga M, Miyazaki Y, Nakao S, Ohyashiki K, Matsumura I, et al. Japanese epidemiological survey with consensus statement on Japanese guidelines for treatment of iron overload in bone marrow failure syndromes. Int J Hematol. 2008;88:30–5.PubMedCrossRef
4.
go back to reference Cortelezzi A, Cattaneo C, Cristiani S, Duca L, Sarina B, Deliliers GL, et al. Non-transferrin-bound iron in myelodysplastic syndromes: a marker of ineffective erythropoiesis? Hematol J. 2000;1:153–8.PubMedCrossRef Cortelezzi A, Cattaneo C, Cristiani S, Duca L, Sarina B, Deliliers GL, et al. Non-transferrin-bound iron in myelodysplastic syndromes: a marker of ineffective erythropoiesis? Hematol J. 2000;1:153–8.PubMedCrossRef
5.
go back to reference Ghoti H, Amer J, Winder A, Rachmilewitz E, Fibach E. Oxidative stress in red blood cells, platelets and polymorphonuclear leukocytes from patients with myelodysplastic syndrome. Eur J Haematol. 2007;79:463–7.PubMedCrossRef Ghoti H, Amer J, Winder A, Rachmilewitz E, Fibach E. Oxidative stress in red blood cells, platelets and polymorphonuclear leukocytes from patients with myelodysplastic syndrome. Eur J Haematol. 2007;79:463–7.PubMedCrossRef
6.
go back to reference Weintraub LR, Conrad ME, Crosby WH. Iron-loading anemia. Treatment with repeated phlebotomies and pyridoxine. N Engl J Med. 1966;275:169–76.PubMedCrossRef Weintraub LR, Conrad ME, Crosby WH. Iron-loading anemia. Treatment with repeated phlebotomies and pyridoxine. N Engl J Med. 1966;275:169–76.PubMedCrossRef
7.
go back to reference Messa E, Cilloni D, Messa F, Arruga F, Roetto A, Saglio G. Deferasirox treatment improved the hemoglobin level and decreased transfusion requirements in four patients with the myelodysplastic syndrome and primary myelofibrosis. Acta Haematol. 2008;120:70–4.PubMedCrossRef Messa E, Cilloni D, Messa F, Arruga F, Roetto A, Saglio G. Deferasirox treatment improved the hemoglobin level and decreased transfusion requirements in four patients with the myelodysplastic syndrome and primary myelofibrosis. Acta Haematol. 2008;120:70–4.PubMedCrossRef
8.
go back to reference Malcovati L, Porta MG, Pascutto C, Invernizzi R, Boni M, Travaglino E, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol. 2005;23:7594–603.PubMedCrossRef Malcovati L, Porta MG, Pascutto C, Invernizzi R, Boni M, Travaglino E, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol. 2005;23:7594–603.PubMedCrossRef
9.
go back to reference Metzgeroth G, Dinter D, Schultheis B, Dorn-Beineke A, Lutz K, Leismann O, et al. Deferasirox in MDS patients with transfusion-caused iron overload—a phase-II study. Ann Hematol. 2009;88:301–10.PubMedCrossRef Metzgeroth G, Dinter D, Schultheis B, Dorn-Beineke A, Lutz K, Leismann O, et al. Deferasirox in MDS patients with transfusion-caused iron overload—a phase-II study. Ann Hematol. 2009;88:301–10.PubMedCrossRef
10.
go back to reference Jensen PD, Heickendorff L, Pedersen B, Bendix-Hansen K, Jensen FT, Christensen T, et al. The effect of iron chelation on haemopoiesis in MDS patients with transfusional iron overload. Br J Haematol. 1996;94:288–99.PubMedCrossRef Jensen PD, Heickendorff L, Pedersen B, Bendix-Hansen K, Jensen FT, Christensen T, et al. The effect of iron chelation on haemopoiesis in MDS patients with transfusional iron overload. Br J Haematol. 1996;94:288–99.PubMedCrossRef
11.
go back to reference Di Tucci AA, Murru R, Alberti D, Rabault B, Deplano S, Angelucci E. Correction of anemia in a transfusion-dependent patient with primary myelofibrosis receiving iron chelation therapy with deferasirox (Exjade, ICL670). Eur J Haematol. 2007;78:540–2.PubMedCrossRef Di Tucci AA, Murru R, Alberti D, Rabault B, Deplano S, Angelucci E. Correction of anemia in a transfusion-dependent patient with primary myelofibrosis receiving iron chelation therapy with deferasirox (Exjade, ICL670). Eur J Haematol. 2007;78:540–2.PubMedCrossRef
12.
go back to reference Zhu H, Bannenberg GL, Moldéus P, Shertzer HG. Oxidation pathways for the intracellular probe 2′,7′-dichlorofluorescein. Arch Toxicol. 1994;68:582–7.PubMedCrossRef Zhu H, Bannenberg GL, Moldéus P, Shertzer HG. Oxidation pathways for the intracellular probe 2′,7′-dichlorofluorescein. Arch Toxicol. 1994;68:582–7.PubMedCrossRef
13.
go back to reference Ohashi T, Kakimoto K, Sokawa Y, Taketani S. Semi-quantitative estimation of heme/hemoprotein with dichlorodihydrofluorescein diacetate. Anal Biochem. 2002;308:392–5.PubMedCrossRef Ohashi T, Kakimoto K, Sokawa Y, Taketani S. Semi-quantitative estimation of heme/hemoprotein with dichlorodihydrofluorescein diacetate. Anal Biochem. 2002;308:392–5.PubMedCrossRef
14.
go back to reference Ohashi T, Mizutani A, Murakami A, Kojo S, Ishii T, Taketani S. Rapid oxidation of dichlorodihydrofluorescein with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett. 2002;511:21–7.PubMedCrossRef Ohashi T, Mizutani A, Murakami A, Kojo S, Ishii T, Taketani S. Rapid oxidation of dichlorodihydrofluorescein with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett. 2002;511:21–7.PubMedCrossRef
15.
go back to reference de Jong K, Emerson RK, Butler J, Bastacky J, Mohandas N, Kuypers FA. Short survival of phosphatidylserine-exposing red blood cells in murine sickle cell anemia. Blood. 2001;98:1577–84.PubMedCrossRef de Jong K, Emerson RK, Butler J, Bastacky J, Mohandas N, Kuypers FA. Short survival of phosphatidylserine-exposing red blood cells in murine sickle cell anemia. Blood. 2001;98:1577–84.PubMedCrossRef
16.
go back to reference Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF. Ineffective erythropoiesis in Stat5a(−/−)5b(−/−) mice due to decreased survival of early erythroblasts. Blood. 2001;98:3261–73.PubMedCrossRef Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF. Ineffective erythropoiesis in Stat5a(−/−)5b(−/−) mice due to decreased survival of early erythroblasts. Blood. 2001;98:3261–73.PubMedCrossRef
17.
go back to reference Liu Y, Pop R, Sadegh C, Brugnara C, Haase VH, Socolovsky M. Suppression of Fas–FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood. 2006;108:123–33.PubMedCrossRef Liu Y, Pop R, Sadegh C, Brugnara C, Haase VH, Socolovsky M. Suppression of Fas–FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood. 2006;108:123–33.PubMedCrossRef
18.
go back to reference Juvonen E, Sahlstedt L, Parkkinen J, Ruutu T. Inhibition of erythroid and granulocyte-macrophage colony formation by non-transferrin-bound iron in vitro: protective effect of apotransferrin. Eur J Haematol. 2007;79:126–31.PubMedCrossRef Juvonen E, Sahlstedt L, Parkkinen J, Ruutu T. Inhibition of erythroid and granulocyte-macrophage colony formation by non-transferrin-bound iron in vitro: protective effect of apotransferrin. Eur J Haematol. 2007;79:126–31.PubMedCrossRef
19.
go back to reference Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet. 2005;37:1264–9.PubMedCrossRef Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet. 2005;37:1264–9.PubMedCrossRef
20.
go back to reference Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood. 1997;89:1–25.PubMed Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood. 1997;89:1–25.PubMed
21.
go back to reference Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117:285–97.PubMedCrossRef Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117:285–97.PubMedCrossRef
22.
go back to reference Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal. 2009;11:1373–414.PubMedCrossRef Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal. 2009;11:1373–414.PubMedCrossRef
23.
go back to reference Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem. 2008;77:755–76.PubMedCrossRef Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem. 2008;77:755–76.PubMedCrossRef
24.
go back to reference Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005;1703:93–109.PubMed Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005;1703:93–109.PubMed
25.
go back to reference Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci. 2001;26:61–6.PubMedCrossRef Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci. 2001;26:61–6.PubMedCrossRef
26.
go back to reference Breckenridge DG, Xue D. Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr Opin Cell Biol. 2004;16:647–52.PubMedCrossRef Breckenridge DG, Xue D. Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr Opin Cell Biol. 2004;16:647–52.PubMedCrossRef
27.
go back to reference Brown GC, Borutaite V. Regulation of apoptosis by the redox state of cytochrome c. Biochim Biophys Acta. 2008;1777:877–81.PubMedCrossRef Brown GC, Borutaite V. Regulation of apoptosis by the redox state of cytochrome c. Biochim Biophys Acta. 2008;1777:877–81.PubMedCrossRef
28.
go back to reference Atlante A, Calissano P, Bobba A, Azzariti A, Marra E, Passarella S. Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J Biol Chem. 2000;275:37159–66.PubMedCrossRef Atlante A, Calissano P, Bobba A, Azzariti A, Marra E, Passarella S. Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J Biol Chem. 2000;275:37159–66.PubMedCrossRef
29.
go back to reference Pan Z, Voehringer DW, Meyn RE. Analysis of redox regulation of cytochrome c-induced apoptosis in a cell-free system. Cell Death Differ. 1999;6:683–8.PubMedCrossRef Pan Z, Voehringer DW, Meyn RE. Analysis of redox regulation of cytochrome c-induced apoptosis in a cell-free system. Cell Death Differ. 1999;6:683–8.PubMedCrossRef
30.
go back to reference Borutaite V, Brown GC. Caspases are reversibly inactivated by hydrogen peroxide. FEBS Lett. 2001;500:114–8.PubMedCrossRef Borutaite V, Brown GC. Caspases are reversibly inactivated by hydrogen peroxide. FEBS Lett. 2001;500:114–8.PubMedCrossRef
31.
go back to reference Suto D, Sato K, Ohba Y, Yoshimura T, Fujii J. Suppression of the pro-apoptotic function of cytochrome c by singlet oxygen via a haem redox state-independent mechanism. Biochem J. 2005;392:399–406.PubMedCrossRef Suto D, Sato K, Ohba Y, Yoshimura T, Fujii J. Suppression of the pro-apoptotic function of cytochrome c by singlet oxygen via a haem redox state-independent mechanism. Biochem J. 2005;392:399–406.PubMedCrossRef
32.
go back to reference al-Refaie FN, Wickens DG, Wonke B, Kontoghiorghes GJ, Hoffbrand AV. Serum non-transferrin-bound iron in beta-thalassaemia major patients treated with desferrioxamine and L1. Br J Haematol. 1992;82:431–6.PubMedCrossRef al-Refaie FN, Wickens DG, Wonke B, Kontoghiorghes GJ, Hoffbrand AV. Serum non-transferrin-bound iron in beta-thalassaemia major patients treated with desferrioxamine and L1. Br J Haematol. 1992;82:431–6.PubMedCrossRef
33.
go back to reference Marsh JH, Hundert M, Schulman P. Deferoxamine-induced restoration of haematopoiesis in myelofibrosis secondary to myelodysplasia. Br J Haematol. 1990;76:148–9.PubMedCrossRef Marsh JH, Hundert M, Schulman P. Deferoxamine-induced restoration of haematopoiesis in myelofibrosis secondary to myelodysplasia. Br J Haematol. 1990;76:148–9.PubMedCrossRef
34.
go back to reference Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.PubMedCrossRef Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.PubMedCrossRef
35.
go back to reference van de Loosdrecht AA, Brada SJ, Blom NR, Hendriks DW, Smit JW, van den Berg E, et al. Mitochondrial disruption and limited apoptosis of erythroblasts are associated with high risk myelodysplasia. An ultrastructural analysis. Leuk Res. 2001;25:385–93.PubMedCrossRef van de Loosdrecht AA, Brada SJ, Blom NR, Hendriks DW, Smit JW, van den Berg E, et al. Mitochondrial disruption and limited apoptosis of erythroblasts are associated with high risk myelodysplasia. An ultrastructural analysis. Leuk Res. 2001;25:385–93.PubMedCrossRef
Metadata
Title
The effect of iron overload and chelation on erythroid differentiation
Authors
Kazuki Taoka
Keiki Kumano
Fumihiko Nakamura
Masataka Hosoi
Susumu Goyama
Yoichi Imai
Akira Hangaishi
Mineo Kurokawa
Publication date
01-02-2012
Publisher
Springer Japan
Published in
International Journal of Hematology / Issue 2/2012
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-011-0988-3

Other articles of this Issue 2/2012

International Journal of Hematology 2/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine