Skip to main content
Top
Published in: Annals of Nuclear Medicine 9/2020

01-09-2020 | Alzheimer's Disease | Original Article

Feasibility study of a PET-only amyloid quantification method: a comparison with visual interpretation

Authors: Natsumi Shimokawa, Go Akamatsu, Miyako Kadosaki, Masayuki Sasaki

Published in: Annals of Nuclear Medicine | Issue 9/2020

Login to get access

Abstract

Objective

Visual evaluation is the standard for amyloid positron emission tomography (PET) examination, though the result depends upon the physician’s subjective review of the images. Therefore, it is expected that objective quantitative evaluation is useful for image interpretation. In this study, we examined the usefulness of the quantitative evaluation of amyloid PET using a PET-only quantification method in comparison with visual evaluation.

Methods

In this study we retrospectively investigated a total of 166 individuals, including 58 cognitively normal controls, 62 individuals with mild cognitive impairment, and 46 individuals with early Alzheimer’s disease. They underwent 11C-Pittsburgh compound-B (PiB) PET examination through the Japanese Alzheimer’s Disease Neuroimaging Initiative (J-ADNI). Amyloid accumulation in cerebral cortices was assessed using visual and quantitative methods. The quantitative evaluation was performed using the adaptive template method and empirically PiB-prone region of interest, and the standardized uptake value ratio (SUVR) in each area was obtained.

Results

Visual evaluation and SUVR were significantly correlated in the cerebral cortices (ρ = 0.85–0.87; p < 0.05). In visual evaluation, sensitivity, specificity, and accuracy were 78%, 76%, and 77%, respectively. Meanwhile, for quantitative evaluation, sensitivity, specificity, and accuracy were 77%, 79%, and 78% in mean cortical SUVR (mcSUVR) and 79%, 79%, and 79% in maximum SUVR (maxSUVR), respectively.

Conclusion

The PET-only quantification method provided a concordant result with visual evaluation and was considered useful for amyloid PET.
Literature
1.
go back to reference Ninomiya T. Japan Prospective Studies Collaboration for Aging and Dementia (JPSC-AD). Brain Nerve. 2017;69:763–9.PubMed Ninomiya T. Japan Prospective Studies Collaboration for Aging and Dementia (JPSC-AD). Brain Nerve. 2017;69:763–9.PubMed
3.
go back to reference Akatsu H, Takahashi M, Matsukawa N, Ishikawa Y, Kondo N, Sato T, et al. Subtype analysis of neuropathologically diagnosed patients in a Japanese geriatric hospital. J Neurol Sci. 2002;196:63–9.CrossRefPubMed Akatsu H, Takahashi M, Matsukawa N, Ishikawa Y, Kondo N, Sato T, et al. Subtype analysis of neuropathologically diagnosed patients in a Japanese geriatric hospital. J Neurol Sci. 2002;196:63–9.CrossRefPubMed
5.
go back to reference Bateman R, Xiong C, Benzinger T, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med. 2012;367:795–804.CrossRefPubMedPubMedCentral Bateman R, Xiong C, Benzinger T, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med. 2012;367:795–804.CrossRefPubMedPubMedCentral
6.
go back to reference Clark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Coleman RE, Doraiswamy PM, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: a prospective cohort study. Lancet Neurol. 2012;11:669–78.CrossRefPubMed Clark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Coleman RE, Doraiswamy PM, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: a prospective cohort study. Lancet Neurol. 2012;11:669–78.CrossRefPubMed
7.
go back to reference Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305:275–83.CrossRefPubMedPubMedCentral Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305:275–83.CrossRefPubMedPubMedCentral
8.
go back to reference Curtis C, Gamez JE, Singh U, Sadowsky CH, Villena T, Sabbagh MN, et al. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 2015;72:287–94.CrossRefPubMed Curtis C, Gamez JE, Singh U, Sadowsky CH, Villena T, Sabbagh MN, et al. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 2015;72:287–94.CrossRefPubMed
9.
go back to reference Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, et al. Florbetaben PET imaging to detect amyloid plaques in Alzheimer disease: Phase 3 study. Alzheimers Dement. 2015;11:964–74.CrossRefPubMed Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, et al. Florbetaben PET imaging to detect amyloid plaques in Alzheimer disease: Phase 3 study. Alzheimers Dement. 2015;11:964–74.CrossRefPubMed
10.
go back to reference Lopresti BJ, Klunk WE, Mathis CA, Hoge JA, Ziolko SK, Lu X, et al. Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med. 2005;46:1959–72.PubMed Lopresti BJ, Klunk WE, Mathis CA, Hoge JA, Ziolko SK, Lu X, et al. Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med. 2005;46:1959–72.PubMed
11.
go back to reference Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, et al. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 2010;9:363–72.CrossRefPubMed Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, et al. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 2010;9:363–72.CrossRefPubMed
12.
go back to reference Akamatsu G, Ikari Y, Ohnishi A, Nishida H, Aita K, Sasaki M, et al. Automated PET-only quantification of amyloid deposition with adaptive template and empirically pre-defined ROI. Phys Med Biol. 2016;61:5768–80.CrossRefPubMed Akamatsu G, Ikari Y, Ohnishi A, Nishida H, Aita K, Sasaki M, et al. Automated PET-only quantification of amyloid deposition with adaptive template and empirically pre-defined ROI. Phys Med Biol. 2016;61:5768–80.CrossRefPubMed
13.
go back to reference Yamane T, Ishii K, Sakata M, Ikari Y, Nishio T, Ishii K, et al. Inter-rater variability of visual interpretation and comparison with quantitative evaluation of 11C-PiB PET amyloid images of the Japanese Alzheimer’s Disease Neuroimaging Initiative (J-ADNI) multicenter study. Eur J Nucl Med Mol Imaging. 2017;44:850–7.CrossRefPubMed Yamane T, Ishii K, Sakata M, Ikari Y, Nishio T, Ishii K, et al. Inter-rater variability of visual interpretation and comparison with quantitative evaluation of 11C-PiB PET amyloid images of the Japanese Alzheimer’s Disease Neuroimaging Initiative (J-ADNI) multicenter study. Eur J Nucl Med Mol Imaging. 2017;44:850–7.CrossRefPubMed
14.
go back to reference Zhou L, Salvado O, Dore V, Bourgeat P, Raniga P, Macaulay SL, et al. MR-less surface-based amyloid assessment based on 11C PiB PET. PLoS ONE. 2014;9:e84777.CrossRefPubMedPubMedCentral Zhou L, Salvado O, Dore V, Bourgeat P, Raniga P, Macaulay SL, et al. MR-less surface-based amyloid assessment based on 11C PiB PET. PLoS ONE. 2014;9:e84777.CrossRefPubMedPubMedCentral
15.
go back to reference Bourgeat P, Villemagne VL, Dore V, Brown B, Macaulay SL, Martins R, et al. Comparison of MR-less PiB SUVR quantification methods. Neurobiol Aging. 2015;36(Suppl 1):S159–S166166.CrossRefPubMed Bourgeat P, Villemagne VL, Dore V, Brown B, Macaulay SL, Martins R, et al. Comparison of MR-less PiB SUVR quantification methods. Neurobiol Aging. 2015;36(Suppl 1):S159–S166166.CrossRefPubMed
16.
17.
go back to reference Saint-Aubert L, Nemmi F, Péran P, Barbeau EJ, Payoux P, Chollet F, et al. Comparison between PET template-based method and MRI-based method for cortical quantification of florbetapir (AV-45) uptake in vivo. Eur J Nucl Med Mol Imaging. 2014;41:836–43.CrossRefPubMed Saint-Aubert L, Nemmi F, Péran P, Barbeau EJ, Payoux P, Chollet F, et al. Comparison between PET template-based method and MRI-based method for cortical quantification of florbetapir (AV-45) uptake in vivo. Eur J Nucl Med Mol Imaging. 2014;41:836–43.CrossRefPubMed
18.
go back to reference Iwatsubo T, Iwata A, Suzuki K, Ihara R, Arai H, Ishii K, et al. Japanese and North American Alzheimer’s Disease Neuroimaging Initiative studies: harmonization for international trials. Alzheimers Dement. 2018;14:1077–87.CrossRefPubMed Iwatsubo T, Iwata A, Suzuki K, Ihara R, Arai H, Ishii K, et al. Japanese and North American Alzheimer’s Disease Neuroimaging Initiative studies: harmonization for international trials. Alzheimers Dement. 2018;14:1077–87.CrossRefPubMed
19.
go back to reference Thurfjell L, Lilja J, Lundqvist R, Buckley C, Smith A, Vandenberghe R, et al. Automated quantification of 18F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: concordance with visual image reads. J Nucl Med. 2014;55:1623–8.CrossRefPubMed Thurfjell L, Lilja J, Lundqvist R, Buckley C, Smith A, Vandenberghe R, et al. Automated quantification of 18F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: concordance with visual image reads. J Nucl Med. 2014;55:1623–8.CrossRefPubMed
20.
go back to reference Jack CR Jr, Lowe VJ, Senjem ML, Weigand SD, Kemp BJ, Shiung MM, et al. 11C-PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain. 2008;131:665–80.CrossRefPubMedPubMedCentral Jack CR Jr, Lowe VJ, Senjem ML, Weigand SD, Kemp BJ, Shiung MM, et al. 11C-PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain. 2008;131:665–80.CrossRefPubMedPubMedCentral
21.
go back to reference Vandenberghe R, Laere KV, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68:319–29.CrossRefPubMed Vandenberghe R, Laere KV, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68:319–29.CrossRefPubMed
Metadata
Title
Feasibility study of a PET-only amyloid quantification method: a comparison with visual interpretation
Authors
Natsumi Shimokawa
Go Akamatsu
Miyako Kadosaki
Masayuki Sasaki
Publication date
01-09-2020
Publisher
Springer Singapore
Published in
Annals of Nuclear Medicine / Issue 9/2020
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-020-01486-3

Other articles of this Issue 9/2020

Annals of Nuclear Medicine 9/2020 Go to the issue