Skip to main content
Top
Published in: Annals of Nuclear Medicine 8/2012

Open Access 01-10-2012 | Original article

F-18 fluorodeoxyglucose uptake and water-perfusable tissue fraction in assessment of myocardial viability

Authors: Hidehiro Iida, Ulla Ruotsalainen, Maija Mäki, Merja Haaparnata, Jörgen Bergman, Liisa-Maria Voipio-Pulkki, Pirjo Nuutila, Kazuhiro Koshino, Juhani Knuuti

Published in: Annals of Nuclear Medicine | Issue 8/2012

Login to get access

Abstract

Objectives

15O-water-perfusable tissue fraction (PTF) has been shown to be a potential index for assessing myocardial viability in PET, an alternative to 18F-fluorodeoxyglucose (FDG). This study aimed to directly compare these two independent methods in assessing myocardial viability in patients with abnormal wall motion.

Methods

PET study was performed on 16 patients with previous myocardial infarction, before coronary artery bypass graft operation (CABG). The protocol included a 15O-carbonmonoxide static, a 15O-water dynamic and an 18F-FDG dynamic scan, during the euglycemic hyperinsulinemic clamp. Echocardiography was performed at the time of PET and 5–12 months after the CABG, and the wall motion recovery was evaluated on segmental and global bases. Consistency between PTF and 18F-FDG was evaluated visually and also in a quantitative manner. Predictive values for the wall motion recovery were also compared between the two approaches.

Results

The image quality of 18F-FDG was superior to that of 15O-water. The qualitative PTF showed significantly smaller defects than 18F-FDG, and the quantitative PTF showed slightly greater values than 18F-FDG in the infarcted region. The two methods were, however, consistent visually and also quantitatively. The predictive values of the wall motion recovery were almost equal between the two approaches. The absolute 18F-FDG uptake was varied in normal segments, and predictive values for the wall motion recovery by the absolute 18F-FDG was less (accuracy: 80 %) compared with those by the relative 18F-FDG (accuracy: 87 %) and the quantitative PTF (accuracy: 89 %).

Conclusion

Despite the small sample size, PTF appears to give consistent results with the 18F-FDG approach, and might be an alternative viability assessment.
Literature
1.
go back to reference Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation. 1985;72(6 Pt 2):V123–35.PubMed Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation. 1985;72(6 Pt 2):V123–35.PubMed
2.
go back to reference Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: evidence for the “hibernating myocardium”. J Am Coll Cardiol. 1986;8(6):1467–70.PubMedCrossRef Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: evidence for the “hibernating myocardium”. J Am Coll Cardiol. 1986;8(6):1467–70.PubMedCrossRef
4.
go back to reference Marshall RC, Tillisch JH, Phelps ME, et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation. 1983;67(4):766–78.PubMedCrossRef Marshall RC, Tillisch JH, Phelps ME, et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation. 1983;67(4):766–78.PubMedCrossRef
5.
go back to reference Schwaiger M, Brunken R, Grover-McKay M, et al. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol. 1986;8(4):800–8.PubMedCrossRef Schwaiger M, Brunken R, Grover-McKay M, et al. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol. 1986;8(4):800–8.PubMedCrossRef
6.
go back to reference Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986;314(14):884–8.PubMedCrossRef Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986;314(14):884–8.PubMedCrossRef
7.
go back to reference Tamaki N, Yonekura Y, Yamashita K, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol. 1989;64(14):860–5.PubMedCrossRef Tamaki N, Yonekura Y, Yamashita K, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol. 1989;64(14):860–5.PubMedCrossRef
8.
go back to reference Knuuti MJ, Nuutila P, Ruotsalainen U, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med. 1992;33(7):1255–62.PubMed Knuuti MJ, Nuutila P, Ruotsalainen U, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med. 1992;33(7):1255–62.PubMed
9.
go back to reference Knuuti MJ, Saraste M, Nuutila P, et al. Myocardial viability: fluorine-18-deoxyglucose positron emission tomography in prediction of wall motion recovery after revascularization. Am Heart J. 1994;127(4 Pt 1):785–96.PubMedCrossRef Knuuti MJ, Saraste M, Nuutila P, et al. Myocardial viability: fluorine-18-deoxyglucose positron emission tomography in prediction of wall motion recovery after revascularization. Am Heart J. 1994;127(4 Pt 1):785–96.PubMedCrossRef
10.
go back to reference Iida H, Rhodes CG, de Silva R, et al. Myocardial tissue fraction-correction for partial volume effects and measure of tissue viability. J Nucl Med. 1991;32(11):2169–75.PubMed Iida H, Rhodes CG, de Silva R, et al. Myocardial tissue fraction-correction for partial volume effects and measure of tissue viability. J Nucl Med. 1991;32(11):2169–75.PubMed
11.
go back to reference Yamamoto Y, de-Silva R, Rhodes CG, et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15O-water and dynamic positron emission tomography. Circulation. 1992;86(1):167–78.PubMedCrossRef Yamamoto Y, de-Silva R, Rhodes CG, et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15O-water and dynamic positron emission tomography. Circulation. 1992;86(1):167–78.PubMedCrossRef
12.
go back to reference de Silva R, Yamamoto Y, Rhodes CG, et al. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography. Circulation. 1992;86(6):1738–42.PubMedCrossRef de Silva R, Yamamoto Y, Rhodes CG, et al. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography. Circulation. 1992;86(6):1738–42.PubMedCrossRef
13.
go back to reference Iida H, Tamura Y, Kitamura K, Bloomfield PM, Eberl S, Ono Y. Histochemical correlates of 15O-water-perfusable tissue fraction in experimental canine studies of old myocardial infarction. J Nucl Med. 2000;41(10):1737–45.PubMed Iida H, Tamura Y, Kitamura K, Bloomfield PM, Eberl S, Ono Y. Histochemical correlates of 15O-water-perfusable tissue fraction in experimental canine studies of old myocardial infarction. J Nucl Med. 2000;41(10):1737–45.PubMed
14.
go back to reference Teramoto N, Koshino K, Yokoyama I, et al. Experimental pig model of old myocardial infarction with long survival leading to chronic left ventricular dysfunction and remodeling as evaluated by PET. J Nucl Med. 2011;52(5):761–8.PubMedCrossRef Teramoto N, Koshino K, Yokoyama I, et al. Experimental pig model of old myocardial infarction with long survival leading to chronic left ventricular dysfunction and remodeling as evaluated by PET. J Nucl Med. 2011;52(5):761–8.PubMedCrossRef
15.
go back to reference Watabe H, Jino H, Kawachi N, et al. Parametric imaging of myocardial blood flow with 15O-water and PET using the basis function method. J Nucl Med. 2005;46(7):1219–24.PubMed Watabe H, Jino H, Kawachi N, et al. Parametric imaging of myocardial blood flow with 15O-water and PET using the basis function method. J Nucl Med. 2005;46(7):1219–24.PubMed
16.
go back to reference Harms HJ, de Haan S, Knaapen P, Allaart CP, Lammertsma AA, Lubberink M. Parametric images of myocardial viability using a single 15O–H2O PET/CT scan. J Nucl Med. 2011;52(5):745–9.PubMedCrossRef Harms HJ, de Haan S, Knaapen P, Allaart CP, Lammertsma AA, Lubberink M. Parametric images of myocardial viability using a single 15O–H2O PET/CT scan. J Nucl Med. 2011;52(5):745–9.PubMedCrossRef
17.
go back to reference de Haan S, Harms HJ, Lubberink M, et al. Parametric imaging of myocardial viability using oxygen-15 labelled water and PET/CT: comparison with late gadolinium enhanced CMR. Eur J Nucl Med Mol Imaging. 2012 (in press). de Haan S, Harms HJ, Lubberink M, et al. Parametric imaging of myocardial viability using oxygen-15 labelled water and PET/CT: comparison with late gadolinium enhanced CMR. Eur J Nucl Med Mol Imaging. 2012 (in press).
18.
go back to reference Spinks TJ, Araujo LI, Rhodes CG, Hutton BF. Physical aspects of cardiac scanning with a block detector positron tomograph. J Comput Assist Tomogr. 1991;15(5):893–904.PubMedCrossRef Spinks TJ, Araujo LI, Rhodes CG, Hutton BF. Physical aspects of cardiac scanning with a block detector positron tomograph. J Comput Assist Tomogr. 1991;15(5):893–904.PubMedCrossRef
19.
go back to reference DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237(3):E214–23.PubMed DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237(3):E214–23.PubMed
20.
go back to reference Nuutila P, Koivisto VA, Knuuti J, et al. Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. J Clin Invest. 1992;89(6):1767–74.PubMedCrossRef Nuutila P, Koivisto VA, Knuuti J, et al. Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. J Clin Invest. 1992;89(6):1767–74.PubMedCrossRef
21.
go back to reference Iida H, Takahashi A, Tamura Y, Ono Y, Lammertsma AA. Myocardial blood flow: comparison of oxygen-15-water bolus injection, slow infusion and oxygen-15-carbon dioxide slow inhalation. J Nucl Med. 1995;36(1):78–85.PubMed Iida H, Takahashi A, Tamura Y, Ono Y, Lammertsma AA. Myocardial blood flow: comparison of oxygen-15-water bolus injection, slow infusion and oxygen-15-carbon dioxide slow inhalation. J Nucl Med. 1995;36(1):78–85.PubMed
22.
go back to reference Iida H, Rhodes CG, de Silva R, et al. Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med. 1992;33(9):1669–77.PubMed Iida H, Rhodes CG, de Silva R, et al. Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med. 1992;33(9):1669–77.PubMed
23.
go back to reference Iida H, Kanno I, Takahashi A, et al. Measurement of absolute myocardial blood flow with H 2 15 O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation. 1988;78(1):104–15.PubMedCrossRef Iida H, Kanno I, Takahashi A, et al. Measurement of absolute myocardial blood flow with H 2 15 O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation. 1988;78(1):104–15.PubMedCrossRef
24.
go back to reference Araujo LI, Lammertsma AA, Rhodes CG, et al. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation. 1991;83(3):875–85.PubMedCrossRef Araujo LI, Lammertsma AA, Rhodes CG, et al. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation. 1991;83(3):875–85.PubMedCrossRef
25.
go back to reference Iida H, Miura S, Shoji Y, et al. Noninvasive quantitation of cerebral blood flow using oxygen-15-water and a dual-PET system. J Nucl Med. 1998;39(10):1789–98.PubMed Iida H, Miura S, Shoji Y, et al. Noninvasive quantitation of cerebral blood flow using oxygen-15-water and a dual-PET system. J Nucl Med. 1998;39(10):1789–98.PubMed
26.
go back to reference Buxton DB, Schelbert HR. Measurement of regional glucose metabolic rates in reperfused myocardium. Am J Physiol. 1991;261(6 Pt 2):H2058–68.PubMed Buxton DB, Schelbert HR. Measurement of regional glucose metabolic rates in reperfused myocardium. Am J Physiol. 1991;261(6 Pt 2):H2058–68.PubMed
27.
go back to reference Maki M, Luotolahti M, Nuutila P, et al. Glucose uptake in the chronically dysfunctional but viable myocardium. Circulation. 1996;93(9):1658–66.PubMedCrossRef Maki M, Luotolahti M, Nuutila P, et al. Glucose uptake in the chronically dysfunctional but viable myocardium. Circulation. 1996;93(9):1658–66.PubMedCrossRef
28.
go back to reference Knuuti MJ, Nuutila P, Ruotsalainen U, et al. The value of quantitative analysis of glucose utilization in detection of myocardial viability by PET. J Nucl Med. 1993;34(12):2068–75.PubMed Knuuti MJ, Nuutila P, Ruotsalainen U, et al. The value of quantitative analysis of glucose utilization in detection of myocardial viability by PET. J Nucl Med. 1993;34(12):2068–75.PubMed
29.
go back to reference Kety SS. The theory and applications of exchange of inert gas at the lungs and tissues. Pharmacol Res. 1951;3:1–41. Kety SS. The theory and applications of exchange of inert gas at the lungs and tissues. Pharmacol Res. 1951;3:1–41.
30.
go back to reference Bergmann SR, Fox KA, Rand AL, et al. Quantification of regional myocardial blood flow in vivo with H 2 15 O. Circulation. 1984;70(4):724–33.PubMedCrossRef Bergmann SR, Fox KA, Rand AL, et al. Quantification of regional myocardial blood flow in vivo with H 2 15 O. Circulation. 1984;70(4):724–33.PubMedCrossRef
31.
go back to reference Katoh C, Ruotsalainen U, Laine H, et al. A new iterative reconstruction method based on median root prior in quantification of myocardial blood flow and oxygen metabolism with PET. J Nucl Med. 1999;40(5):862–7.PubMed Katoh C, Ruotsalainen U, Laine H, et al. A new iterative reconstruction method based on median root prior in quantification of myocardial blood flow and oxygen metabolism with PET. J Nucl Med. 1999;40(5):862–7.PubMed
32.
go back to reference Huang S, Mahoney D, Phelps M. Quantitation in positron emission tomography: 8. Effect of non-linear parameter estimation on functional images. J Comput Assist Tomogr. 1987;11:314–25.PubMedCrossRef Huang S, Mahoney D, Phelps M. Quantitation in positron emission tomography: 8. Effect of non-linear parameter estimation on functional images. J Comput Assist Tomogr. 1987;11:314–25.PubMedCrossRef
33.
go back to reference Herrero P, Staudenherz A, Walsh JF, Gropler RJ, Bergmann SR. Heterogeneity of myocardial perfusion provides the physiological basis of perfusable tissue index. J Nucl Med. 1995;36(2):320–7.PubMed Herrero P, Staudenherz A, Walsh JF, Gropler RJ, Bergmann SR. Heterogeneity of myocardial perfusion provides the physiological basis of perfusable tissue index. J Nucl Med. 1995;36(2):320–7.PubMed
34.
go back to reference Harms HJ, Knaapen P, de Haan S, Halbmeijer R, Lammertsma AA, Lubberink M. Automatic generation of absolute myocardial blood flow images using [15O]H2O and a clinical PET/CT scanner. Eur J Nucl Med Mol Imaging. 2011;38(5):930–9.PubMedCrossRef Harms HJ, Knaapen P, de Haan S, Halbmeijer R, Lammertsma AA, Lubberink M. Automatic generation of absolute myocardial blood flow images using [15O]H2O and a clinical PET/CT scanner. Eur J Nucl Med Mol Imaging. 2011;38(5):930–9.PubMedCrossRef
35.
go back to reference Koshino K, Watabe H, Hasegawa S, Hayashi T, Hatazawa J, Iida H. Development of motion correction technique for cardiac (15)O-water PET study using an optical motion tracking system. Ann Nucl Med. 2009;24(1):1–11.PubMedCrossRef Koshino K, Watabe H, Hasegawa S, Hayashi T, Hatazawa J, Iida H. Development of motion correction technique for cardiac (15)O-water PET study using an optical motion tracking system. Ann Nucl Med. 2009;24(1):1–11.PubMedCrossRef
Metadata
Title
F-18 fluorodeoxyglucose uptake and water-perfusable tissue fraction in assessment of myocardial viability
Authors
Hidehiro Iida
Ulla Ruotsalainen
Maija Mäki
Merja Haaparnata
Jörgen Bergman
Liisa-Maria Voipio-Pulkki
Pirjo Nuutila
Kazuhiro Koshino
Juhani Knuuti
Publication date
01-10-2012
Publisher
Springer Japan
Published in
Annals of Nuclear Medicine / Issue 8/2012
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-012-0631-2

Other articles of this Issue 8/2012

Annals of Nuclear Medicine 8/2012 Go to the issue