Skip to main content
Top
Published in: Annals of Nuclear Medicine 3/2010

01-04-2010 | Original Article

18F-FDG PET-CT respiratory gating in characterization of pulmonary lesions: approximation towards clinical indications

Authors: A. M. García Vicente, A. M. Soriano Castrejón, M. P. Talavera Rubio, A. A. León Martín, A. M. Palomar Muñoz, J. P. Pilkington Woll, V. M. Poblete García

Published in: Annals of Nuclear Medicine | Issue 3/2010

Login to get access

Abstract

Aim

To evaluate the effect of the 18F-FDG PET-CT respiratory gating (4D) study in the correct documentation of pulmonary lesions with faint uptake in standard PET-CT.

Methods

Forty-two pulmonary lesions with a low or no detectable uptake of FDG (SUVmax < 2.5) in 3D PET-CT were prospectively evaluated in 28 patients (19 males and 9 females), mean age 66.5 years (41–81). 22 patients had neoplastic background. A conventional PET-CT (3D) total body scan was performed approximately 60 min after iv injection of a mean dose of 370 MBq. Furthermore, a 4D PET-CT (synchronized with respiratory movement) thorax study was acquired. SUVmax was determined for each lesion in both studies. For the 4D studies, we selected the SUVmax in respiratory period with the highest uptake (“best bin”). We calculated the SUVmax percentage difference between 3D and 4D PET-CT (% difference = SUVmax 4D − SUVmax 3D/SUVmax 3D × 100) and the relation of this value with the size and locations of the lesions. In 4D study, any lesion with SUVmax ≥ 2.5 was classified as malignant. We assessed the changes of lesion classification (from benign to malignant) applying the 4D technique. The final diagnosis was obtained by histological assessment or clinical and radiological follow-up longer than 12 months.

Results

Forty out of 42 lesions showed an increase of SUVmax in the 4D study with respect to 3D. The mean SUVmax in the 3D and 4D PET-CT studies were 1.33 (±0.59) and 2.26 (±0.87), respectively. The SUVmax percentage difference mean between both techniques was 83.3% (±80.81).The smaller the lesion the greater was the SUVmax percentage difference (P < 0.05). No differences were observed depending on the location of the lesion. In 40% of cases, there was a change in the final classification of lesions from benign to malignant. In the final diagnosis, 24 lesions were malignant. 4D PET-CT diagnosed correctly the 52% of them.

Conclusions

The 4D PET-CT study permitted a better characterization of malignant lung lesions compared with the standard PET-CT, because of its higher sensitivity. 4D PET-CT is a recommendable technique in the early diagnosis of malignant lesions.
Literature
1.
go back to reference Osman MM, Cohade C, Nakamoto Y, Wahl RL. Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging. 2003;30:603–6.PubMed Osman MM, Cohade C, Nakamoto Y, Wahl RL. Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging. 2003;30:603–6.PubMed
2.
go back to reference Nehmeh SA, Erdi Y, Ling CC, Rosenzweig E, Shoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med. 2002;43:876–81.PubMed Nehmeh SA, Erdi Y, Ling CC, Rosenzweig E, Shoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med. 2002;43:876–81.PubMed
3.
go back to reference Bryant AS, Cerfolio RJ. The maximum standardized uptake values on integrated FDG-PET/CT is useful in differentiating benign from malignant pulmonary nodules. Ann Thorac Surg. 2006;82:1016–20.CrossRefPubMed Bryant AS, Cerfolio RJ. The maximum standardized uptake values on integrated FDG-PET/CT is useful in differentiating benign from malignant pulmonary nodules. Ann Thorac Surg. 2006;82:1016–20.CrossRefPubMed
4.
go back to reference Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA. 2001;285:914–24.CrossRefPubMed Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA. 2001;285:914–24.CrossRefPubMed
5.
go back to reference Degirmenci B, Wilson D, Laymon CM, Becker C, Mason NS, Bencherif B, et al. Standarized uptake value-based evaluations of solitary pulmonary nodules using F-18 fluorodeoxyglucose-PET/computed tomography. Nucl Med Commun. 2008;29:614–22.CrossRefPubMed Degirmenci B, Wilson D, Laymon CM, Becker C, Mason NS, Bencherif B, et al. Standarized uptake value-based evaluations of solitary pulmonary nodules using F-18 fluorodeoxyglucose-PET/computed tomography. Nucl Med Commun. 2008;29:614–22.CrossRefPubMed
6.
go back to reference Kim SC, Machac J, Krynyckyi BR, Knesaurek K, Krellenstein D, Schultz B, et al. FDG PET for evaluation of indeterminate lung nodules: assigning a probability of malignancy may be preferable to binary readings. Ann Nucl Med. 2008;22:165–70.CrossRefPubMed Kim SC, Machac J, Krynyckyi BR, Knesaurek K, Krellenstein D, Schultz B, et al. FDG PET for evaluation of indeterminate lung nodules: assigning a probability of malignancy may be preferable to binary readings. Ann Nucl Med. 2008;22:165–70.CrossRefPubMed
7.
go back to reference Pevsner A, Nehmeh SA, Humm JL, Mageras GS, Erdi YE. Effect of motion on tracer activity determination in CT attenuation corrected PET images: a lung phantom study. Med Phys. 2005;32:2358–62. Pevsner A, Nehmeh SA, Humm JL, Mageras GS, Erdi YE. Effect of motion on tracer activity determination in CT attenuation corrected PET images: a lung phantom study. Med Phys. 2005;32:2358–62.
8.
go back to reference Goerres GW, Kamel E, Seifert B, Burger C, Buck A, Hany TF, et al. Accuracy of image coregistration of pulmonary lesions in patients with non-small cell lung cancer using an integrated PET/CT system. J Nucl Med. 2002;43:1469–75.PubMed Goerres GW, Kamel E, Seifert B, Burger C, Buck A, Hany TF, et al. Accuracy of image coregistration of pulmonary lesions in patients with non-small cell lung cancer using an integrated PET/CT system. J Nucl Med. 2002;43:1469–75.PubMed
9.
go back to reference Beyer T, Antoch G, Blodgett T, Freudenberg LF, Akhurst T, Mueller S. Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging. 2003;30:588–96.PubMed Beyer T, Antoch G, Blodgett T, Freudenberg LF, Akhurst T, Mueller S. Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging. 2003;30:588–96.PubMed
10.
go back to reference Lowe VJ, Fletcher JW, Gobar L, Lawson M, Kirchner P, Valk P, et al. Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol. 1998;16:1075–84.PubMed Lowe VJ, Fletcher JW, Gobar L, Lawson M, Kirchner P, Valk P, et al. Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol. 1998;16:1075–84.PubMed
11.
go back to reference Erdi Y, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med. 2004;45:1287–92.PubMed Erdi Y, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med. 2004;45:1287–92.PubMed
12.
go back to reference Nehmeh SA, Erdi YE, Ling CC, Pevsner A, Rosenzweig KE, Yorke E, et al. Four dimensional (4D) PET/CT imaging in the thorax. Med Phys. 2004;31:3179–86.CrossRefPubMed Nehmeh SA, Erdi YE, Ling CC, Pevsner A, Rosenzweig KE, Yorke E, et al. Four dimensional (4D) PET/CT imaging in the thorax. Med Phys. 2004;31:3179–86.CrossRefPubMed
13.
go back to reference Larson SM, Nehmeh SA, Erdi Y, Humm JL. PET-CT in non-small-cell lung cancer: value of respiratory-gated PET. Chang Gung Med J. 2005;28:306–14.PubMed Larson SM, Nehmeh SA, Erdi Y, Humm JL. PET-CT in non-small-cell lung cancer: value of respiratory-gated PET. Chang Gung Med J. 2005;28:306–14.PubMed
14.
go back to reference Pan T, Mawlawi O, Nehmeh SA, Erdi YE, Luo D, Liu HH, et al. Attenuation correction of PET images with respiration-averaged CT images in PET/CT. J Nucl Med. 2005;46:1481–7.PubMed Pan T, Mawlawi O, Nehmeh SA, Erdi YE, Luo D, Liu HH, et al. Attenuation correction of PET images with respiration-averaged CT images in PET/CT. J Nucl Med. 2005;46:1481–7.PubMed
15.
go back to reference Hamill JJ, Bosmans G, Dekker A. Respiratory-gated CT as a tool for the simulation of breathing artifacts in PET and PET-CT. Med Phys. 2008;35:576–85.CrossRefPubMed Hamill JJ, Bosmans G, Dekker A. Respiratory-gated CT as a tool for the simulation of breathing artifacts in PET and PET-CT. Med Phys. 2008;35:576–85.CrossRefPubMed
16.
go back to reference Cheng N-M, Yu C-T, Ho K-C, Wu YC, Liu YC, Wang CW, et al. Respiration-averaged CT for attenuation correction in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2009;36:607–15.CrossRefPubMed Cheng N-M, Yu C-T, Ho K-C, Wu YC, Liu YC, Wang CW, et al. Respiration-averaged CT for attenuation correction in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2009;36:607–15.CrossRefPubMed
17.
go back to reference Lupi A, Zaroccolo M, Salgarello M, Malfatti V, Zanco P. The effect of 18F-FDG-PET/CT respiratory gating on detected metabolic activity in lung lesions. Ann Nucl Med. 2009;23:191–6.CrossRefPubMed Lupi A, Zaroccolo M, Salgarello M, Malfatti V, Zanco P. The effect of 18F-FDG-PET/CT respiratory gating on detected metabolic activity in lung lesions. Ann Nucl Med. 2009;23:191–6.CrossRefPubMed
18.
go back to reference Boucher L, Rodriguez S, Lecomte R, Bénard F. Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. J Nucl Med. 2004;45:214–9.PubMed Boucher L, Rodriguez S, Lecomte R, Bénard F. Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. J Nucl Med. 2004;45:214–9.PubMed
19.
go back to reference García Vicente AM, Soriano Castrejón A, Talavera Rubio MP, Poblete García VM, Palomar Muñoz A, Cepedello Boiso I, et al. 18F-FDG PET/CT and respiratory synchronization: effect in the detection and classification of pulmonary lesions. Rev Esp Med Nucl. 2009;28(4):181–7. García Vicente AM, Soriano Castrejón A, Talavera Rubio MP, Poblete García VM, Palomar Muñoz A, Cepedello Boiso I, et al. 18F-FDG PET/CT and respiratory synchronization: effect in the detection and classification of pulmonary lesions. Rev Esp Med Nucl. 2009;28(4):181–7.
20.
go back to reference Cronin P, Dwamena BA, Kelly AM, Carlos RC. Solitary pulmonary nodules: meta-analytic comparison of cross-sectional imaging modalities for diagnosis of malignancy. Radiology. 2008;246:772–82.CrossRefPubMed Cronin P, Dwamena BA, Kelly AM, Carlos RC. Solitary pulmonary nodules: meta-analytic comparison of cross-sectional imaging modalities for diagnosis of malignancy. Radiology. 2008;246:772–82.CrossRefPubMed
21.
go back to reference Hashimoto Y, Tsujikawa T, Kondo C, Maki M, Momose M, Nagai A. et al. Accuracy of PET for diagnosis of solid pulmonary lesions with 18F-FDG uptake below the standardized uptake value of 2.5. J Nucl Med. 2006;47:426–31.PubMed Hashimoto Y, Tsujikawa T, Kondo C, Maki M, Momose M, Nagai A. et al. Accuracy of PET for diagnosis of solid pulmonary lesions with 18F-FDG uptake below the standardized uptake value of 2.5. J Nucl Med. 2006;47:426–31.PubMed
22.
go back to reference Chin BB, Green ED, Turkington TG, Hawk TC, Coleman RE. Increasing uptake time in FDG-PET: standardized uptake values in normal tissues at 1 versus 3 h. Mol Imaging Biol. 2009;11:118–22.CrossRefPubMed Chin BB, Green ED, Turkington TG, Hawk TC, Coleman RE. Increasing uptake time in FDG-PET: standardized uptake values in normal tissues at 1 versus 3 h. Mol Imaging Biol. 2009;11:118–22.CrossRefPubMed
23.
go back to reference Nuñez R, Kalapparambath A, Varela J. Improvement in sensitivity with delayed imaging of pulmonary lesions with FDG-PET. Rev Esp Med Nucl. 2007;26:196–207.CrossRefPubMed Nuñez R, Kalapparambath A, Varela J. Improvement in sensitivity with delayed imaging of pulmonary lesions with FDG-PET. Rev Esp Med Nucl. 2007;26:196–207.CrossRefPubMed
24.
go back to reference Kim IJ, Kim SJ, Kim YS, Lee TH, Jeong YJ. Characterization of pulmonary lesions with low F18-FDG uptake using double phase F-18 FDG-PET: comparing of visual and quantitative analyses. Neoplasma. 2009;56:33–9.CrossRefPubMed Kim IJ, Kim SJ, Kim YS, Lee TH, Jeong YJ. Characterization of pulmonary lesions with low F18-FDG uptake using double phase F-18 FDG-PET: comparing of visual and quantitative analyses. Neoplasma. 2009;56:33–9.CrossRefPubMed
26.
go back to reference Nehmeh SA, Erdi YE, Rosenzweig KE, Schoder H, Larson SM, Squire OD, et al. Reduction of respiratory motion artifacts in pet imaging of lung cancer by respiratory correlated dynamic PET: methodology and comparison with respiratory gated PET. J Nucl Med. 2003;44:1644–8.PubMed Nehmeh SA, Erdi YE, Rosenzweig KE, Schoder H, Larson SM, Squire OD, et al. Reduction of respiratory motion artifacts in pet imaging of lung cancer by respiratory correlated dynamic PET: methodology and comparison with respiratory gated PET. J Nucl Med. 2003;44:1644–8.PubMed
27.
go back to reference Nehmeh SA, Erdi YE, Meirelles GSP, Squire O, Larson SM, Humm JL, et al. Deep-inspiration breathhold PET/CT of the thorax. J Nucl Med. 2007;48:22–6.PubMed Nehmeh SA, Erdi YE, Meirelles GSP, Squire O, Larson SM, Humm JL, et al. Deep-inspiration breathhold PET/CT of the thorax. J Nucl Med. 2007;48:22–6.PubMed
28.
go back to reference Nagel CCA, Bosmans G, Dekker ALAJ, Ollers MC, De Ruysscher DK, Lambin P, et al. Phased attenuation correction in respiration correlated computed tomography/positron emitted tomography. Med Phys. 2006;33:1840–7.CrossRefPubMed Nagel CCA, Bosmans G, Dekker ALAJ, Ollers MC, De Ruysscher DK, Lambin P, et al. Phased attenuation correction in respiration correlated computed tomography/positron emitted tomography. Med Phys. 2006;33:1840–7.CrossRefPubMed
29.
go back to reference Meirelles GSP, Erdi YE, Nehmeh SA, Squire OD, Larson SM, Humm JL, et al. Deep-inspiration breathhold PET/CT: clinical findings with a new technique for detection and characterization of thoracic lesions. J Nucl Med. 2006;48:712–9.CrossRef Meirelles GSP, Erdi YE, Nehmeh SA, Squire OD, Larson SM, Humm JL, et al. Deep-inspiration breathhold PET/CT: clinical findings with a new technique for detection and characterization of thoracic lesions. J Nucl Med. 2006;48:712–9.CrossRef
30.
go back to reference Kawano T, Ohtake E, Inoue T. Deep-inspiration breath-hold PET/CT of lung cancer: maximum standardized uptake value analysis of 108 patients. J Nucl Med. 2008;49:1223–31.CrossRefPubMed Kawano T, Ohtake E, Inoue T. Deep-inspiration breath-hold PET/CT of lung cancer: maximum standardized uptake value analysis of 108 patients. J Nucl Med. 2008;49:1223–31.CrossRefPubMed
31.
go back to reference Torizuka T, Tanizaki Y, Kanno T, Futatsubashi M, Yoshikawa E, Okada H, et al. Single 20-second acquisition of deep-inspiration breath-hold PET/CT: clinical feasibility for lung cancer. J Nucl Med. 2009;50:1579–84.CrossRefPubMed Torizuka T, Tanizaki Y, Kanno T, Futatsubashi M, Yoshikawa E, Okada H, et al. Single 20-second acquisition of deep-inspiration breath-hold PET/CT: clinical feasibility for lung cancer. J Nucl Med. 2009;50:1579–84.CrossRefPubMed
32.
go back to reference Hamberg LM, Hunter GL, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of flucose metabolism: useful parameter or oversimplification? J Nucl Med. 1994;35:1308–12.PubMed Hamberg LM, Hunter GL, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of flucose metabolism: useful parameter or oversimplification? J Nucl Med. 1994;35:1308–12.PubMed
Metadata
Title
18F-FDG PET-CT respiratory gating in characterization of pulmonary lesions: approximation towards clinical indications
Authors
A. M. García Vicente
A. M. Soriano Castrejón
M. P. Talavera Rubio
A. A. León Martín
A. M. Palomar Muñoz
J. P. Pilkington Woll
V. M. Poblete García
Publication date
01-04-2010
Publisher
Springer Japan
Published in
Annals of Nuclear Medicine / Issue 3/2010
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-010-0345-2

Other articles of this Issue 3/2010

Annals of Nuclear Medicine 3/2010 Go to the issue