Skip to main content
Top
Published in: Indian Journal of Pediatrics 10/2016

01-10-2016 | Review Article

When to Suspect and How to Diagnose Mitochondrial Disorders?

Authors: Sergei Korenev, Andrew A. M. Morris

Published in: Indian Journal of Pediatrics | Issue 10/2016

Login to get access

Abstract

Disorders of the mitochondrial respiratory chain are an exceedingly diverse group. The clinical features can affect any tissue or organ and occur at any age, with any mode of inheritance. The diagnosis of mitochondrial disorders requires knowledge of the clinical phenotypes and access to a wide range of laboratory techniques. A few syndromes are associated with a specific genetic defect and in these cases it is appropriate to proceed directly to an appropriate test of blood or urine. In most cases, however, the best strategy starts with biochemical and histochemical studies on a muscle biopsy. Appropriate molecular genetic studies can then be chosen, based on these results and the clinical picture. Unfortunately, there is currently limited availability of respiratory chain studies in India. Exome sequencing is undertaken increasingly often; without preceding mitochondrial studies, this can lead to misleading results.
Literature
1.
go back to reference Dhillon VS, Fenech M. Mutations that affect mitochondrial functions and their association with neurodegenerative diseases. Mutat Res Rev Mutat Res. 2014;759:1–13.CrossRefPubMed Dhillon VS, Fenech M. Mutations that affect mitochondrial functions and their association with neurodegenerative diseases. Mutat Res Rev Mutat Res. 2014;759:1–13.CrossRefPubMed
2.
go back to reference Lindroos MM, Majamaa K, Tura A, et al. m.3243A>G mutation in mitochondrial DNA leads to decreased insulin sensitivity in skeletal muscle and to progressive beta-cell dysfunction. Diabetes. 2009;58:543–9.CrossRefPubMedPubMedCentral Lindroos MM, Majamaa K, Tura A, et al. m.3243A>G mutation in mitochondrial DNA leads to decreased insulin sensitivity in skeletal muscle and to progressive beta-cell dysfunction. Diabetes. 2009;58:543–9.CrossRefPubMedPubMedCentral
3.
go back to reference Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol. 2013;5:a021220.CrossRefPubMedPubMedCentral Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol. 2013;5:a021220.CrossRefPubMedPubMedCentral
6.
go back to reference Rahman S, Hanna MG. Diagnosis and therapy in neuromuscular disorders: diagnosis and new treatments in mitochondrial diseases. J Neurol Neurosurg Psychiatry. 2009;80:943–53.CrossRefPubMed Rahman S, Hanna MG. Diagnosis and therapy in neuromuscular disorders: diagnosis and new treatments in mitochondrial diseases. J Neurol Neurosurg Psychiatry. 2009;80:943–53.CrossRefPubMed
7.
go back to reference DiMauro S, Hirano M. MELAS. In: Pagon RA, Adam MP, Ardinger HH, editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993–2015. 2001 Feb 27 [updated 2013 Nov 21]. DiMauro S, Hirano M. MELAS. In: Pagon RA, Adam MP, Ardinger HH, editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993–2015. 2001 Feb 27 [updated 2013 Nov 21].
8.
go back to reference Haas RH, Parikh S, Falk MJ, et al; Mitochondrial Medicine Society’s Committee on Diagnosis. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab. 2008;94:16–37. Haas RH, Parikh S, Falk MJ, et al; Mitochondrial Medicine Society’s Committee on Diagnosis. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab. 2008;94:16–37.
9.
go back to reference Davis RL, Liang C, Edema-Hildebrand F, et al. Fibroblast growth factor 21 is a sensitive biomarker of mitochondrial disease. Neurology. 2013;81:1819–26.CrossRefPubMed Davis RL, Liang C, Edema-Hildebrand F, et al. Fibroblast growth factor 21 is a sensitive biomarker of mitochondrial disease. Neurology. 2013;81:1819–26.CrossRefPubMed
10.
go back to reference Suomalainen A, Elo JM, Pietiläinen KH, et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 2011;10:806–18.CrossRefPubMed Suomalainen A, Elo JM, Pietiläinen KH, et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 2011;10:806–18.CrossRefPubMed
11.
go back to reference Friedman SD, Shaw DW, Ishak G, et al. The use of neuroimaging in the diagnosis of mitochondrial disease. Dev Disabil Res Rev. 2010;16:129–35.CrossRefPubMed Friedman SD, Shaw DW, Ishak G, et al. The use of neuroimaging in the diagnosis of mitochondrial disease. Dev Disabil Res Rev. 2010;16:129–35.CrossRefPubMed
12.
13.
go back to reference Edvardson S, Shaag A, Kolesnikova O, et al. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet. 2007;81:857–62.CrossRefPubMedPubMedCentral Edvardson S, Shaag A, Kolesnikova O, et al. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet. 2007;81:857–62.CrossRefPubMedPubMedCentral
14.
go back to reference Scheper GC, van der Klok T, van Andel RJ, et al. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet. 2007;39:534–9.CrossRefPubMed Scheper GC, van der Klok T, van Andel RJ, et al. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet. 2007;39:534–9.CrossRefPubMed
16.
go back to reference Baker PR, Friederich MW, Swanson MA, et al. Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain. 2014;137:366–79.CrossRefPubMed Baker PR, Friederich MW, Swanson MA, et al. Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain. 2014;137:366–79.CrossRefPubMed
17.
go back to reference Wortmann SB, Duran M, Anikster Y, et al. Inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature: proper classification and nomenclature. J Inherit Metab Dis. 2013;36:923–8.CrossRefPubMed Wortmann SB, Duran M, Anikster Y, et al. Inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature: proper classification and nomenclature. J Inherit Metab Dis. 2013;36:923–8.CrossRefPubMed
19.
go back to reference Lara MC, Valentino ML, Torres-Torronteras J, et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): biochemical features and therapeutic approaches. Biosci Rep. 2007;27:151–63.CrossRefPubMed Lara MC, Valentino ML, Torres-Torronteras J, et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): biochemical features and therapeutic approaches. Biosci Rep. 2007;27:151–63.CrossRefPubMed
20.
go back to reference Bowron A, Frost R, Powers VE, et al. Diagnosis of Barth syndrome using a novel LC-MS/MS method for leukocyte cardiolipin analysis. J Inherit Metab Dis. 2013;36:741–6.CrossRefPubMed Bowron A, Frost R, Powers VE, et al. Diagnosis of Barth syndrome using a novel LC-MS/MS method for leukocyte cardiolipin analysis. J Inherit Metab Dis. 2013;36:741–6.CrossRefPubMed
21.
go back to reference Rollins S, Prayson RA, McMahon JT, et al. Diagnostic yield muscle biopsy in patients with clinical evidence of mitochondrial cytopathy. Am J Clin Pathol. 2001;116:326–30.CrossRefPubMed Rollins S, Prayson RA, McMahon JT, et al. Diagnostic yield muscle biopsy in patients with clinical evidence of mitochondrial cytopathy. Am J Clin Pathol. 2001;116:326–30.CrossRefPubMed
22.
go back to reference Rodenburg RJ. Biochemical diagnosis of mitochondrial disorders. J Inherit Metab Dis. 2011;34:283–92.CrossRefPubMed Rodenburg RJ. Biochemical diagnosis of mitochondrial disorders. J Inherit Metab Dis. 2011;34:283–92.CrossRefPubMed
23.
go back to reference Taylor RW, Pyle A, Griffin H, et al. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. J Am Med Assoc. 2014;312:68–77.CrossRef Taylor RW, Pyle A, Griffin H, et al. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. J Am Med Assoc. 2014;312:68–77.CrossRef
Metadata
Title
When to Suspect and How to Diagnose Mitochondrial Disorders?
Authors
Sergei Korenev
Andrew A. M. Morris
Publication date
01-10-2016
Publisher
Springer India
Published in
Indian Journal of Pediatrics / Issue 10/2016
Print ISSN: 0019-5456
Electronic ISSN: 0973-7693
DOI
https://doi.org/10.1007/s12098-015-1932-y

Other articles of this Issue 10/2016

Indian Journal of Pediatrics 10/2016 Go to the issue