Skip to main content
Top
Published in: Clinical and Translational Oncology 2/2019

01-02-2019 | Research Article

Inter-observer variation of hippocampus delineation in hippocampal avoidance prophylactic cranial irradiation

Authors: F. Bartel, M. van Herk, H. Vrenken, F. Vandaele, S. Sunaert, K. de Jaeger, N. J. Dollekamp, C. Carbaat, E. Lamers, E. M. T. Dieleman, Y. Lievens, D. de Ruysscher, S. B. Schagen, M. B. de Ruiter, J. C. de Munck, J. Belderbos

Published in: Clinical and Translational Oncology | Issue 2/2019

Login to get access

Abstract

Background

Hippocampal avoidance prophylactic cranial irradiation (HA-PCI) techniques have been developed to reduce radiation damage to the hippocampus. An inter-observer hippocampus delineation analysis was performed and the influence of the delineation variability on dose to the hippocampus was studied.

Materials and methods

For five patients, seven observers delineated both hippocampi on brain MRI. The intra-class correlation (ICC) with absolute agreement and the generalized conformity index (CIgen) were computed. Median surfaces over all observers’ delineations were created for each patient and regional outlining differences were analysed. HA-PCI dose plans were made from the median surfaces and we investigated whether dose constraints in the hippocampus could be met for all delineations.

Results

The ICC for the left and right hippocampus was 0.56 and 0.69, respectively, while the CIgen ranged from 0.55 to 0.70. The posterior and anterior-medial hippocampal regions had most variation with SDs ranging from approximately 1 to 2.5 mm. The mean dose (Dmean) constraint was met for all delineations, but for the dose received by 1% of the hippocampal volume (D1%) violations were observed.

Conclusion

The relatively low ICC and CIgen indicate that delineation variability among observers for both left and right hippocampus was large. The posterior and anterior-medial border have the largest delineation inaccuracy. The hippocampus Dmean constraint was not violated.
Appendix
Available only for authorised users
Literature
1.
go back to reference Govindan R, Page N, Morgensztern D, Read W, Tierney R, Vlahiotis A, et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006;24:4539–44.CrossRefPubMed Govindan R, Page N, Morgensztern D, Read W, Tierney R, Vlahiotis A, et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006;24:4539–44.CrossRefPubMed
3.
go back to reference Le Péchoux C, Sun A, Slotman BJ, De Ruysscher D, Belderbos J, Gore EM. Prophylactic cranial irradiation for patients with lung cancer. Lancet Oncol. 2016;17:e277–93.CrossRef Le Péchoux C, Sun A, Slotman BJ, De Ruysscher D, Belderbos J, Gore EM. Prophylactic cranial irradiation for patients with lung cancer. Lancet Oncol. 2016;17:e277–93.CrossRef
4.
go back to reference Aupérin A, Arriagada R, Pignon JP, Le Péchoux C, Gregor A, Stephens RJ, et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N Engl J Med. 1999;341:476–84.CrossRefPubMed Aupérin A, Arriagada R, Pignon JP, Le Péchoux C, Gregor A, Stephens RJ, et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N Engl J Med. 1999;341:476–84.CrossRefPubMed
5.
go back to reference Slotman B, Faivre-Finn C. Prophylactic cranial irradiation in extensive small-cell lung cancer. N Engl J Med. 2007;357:664–72.CrossRefPubMed Slotman B, Faivre-Finn C. Prophylactic cranial irradiation in extensive small-cell lung cancer. N Engl J Med. 2007;357:664–72.CrossRefPubMed
6.
go back to reference Wolfson AH, Bae K, Komaki R, Meyers C, Movsas B, Le Pechoux C, et al. Primary analysis of a phase II randomized trial Radiation Therapy Oncology Group (RTOG) 0212: impact of different total doses and schedules of prophylactic cranial irradiation on chronic neurotoxicity and quality of life for patients with limited-disease. Int J Radiat Oncol Biol Phys. 2011;81:77–84.CrossRefPubMed Wolfson AH, Bae K, Komaki R, Meyers C, Movsas B, Le Pechoux C, et al. Primary analysis of a phase II randomized trial Radiation Therapy Oncology Group (RTOG) 0212: impact of different total doses and schedules of prophylactic cranial irradiation on chronic neurotoxicity and quality of life for patients with limited-disease. Int J Radiat Oncol Biol Phys. 2011;81:77–84.CrossRefPubMed
7.
go back to reference Gondi V, Paulus R, Bruner DW, Meyers CA, Gore EM, Wolfson A, et al. Decline in tested and self-reported cognitive functioning after prophylactic cranial irradiation for lung cancer: pooled secondary analysis of Radiation Therapy Oncology Group randomized trials 0212 and 0214. Int J Radiat Oncol Biol Phys. 2013;86:656–64.CrossRefPubMedPubMedCentral Gondi V, Paulus R, Bruner DW, Meyers CA, Gore EM, Wolfson A, et al. Decline in tested and self-reported cognitive functioning after prophylactic cranial irradiation for lung cancer: pooled secondary analysis of Radiation Therapy Oncology Group randomized trials 0212 and 0214. Int J Radiat Oncol Biol Phys. 2013;86:656–64.CrossRefPubMedPubMedCentral
8.
go back to reference Le Péchoux C, Laplanche A, Faivre-Finn C, Ciuleanu T, Wanders R, Lerouge D, et al. Clinical neurological outcome and quality of life among patients with limited small-cell cancer treated with two different doses of prophylactic cranial irradiation in the intergroup phase III trial (PCI99-01, EORTC 22003-08004, RTOG 0212 and IFCT 99-01). Ann Oncol. 2011;22:1154–63.CrossRefPubMed Le Péchoux C, Laplanche A, Faivre-Finn C, Ciuleanu T, Wanders R, Lerouge D, et al. Clinical neurological outcome and quality of life among patients with limited small-cell cancer treated with two different doses of prophylactic cranial irradiation in the intergroup phase III trial (PCI99-01, EORTC 22003-08004, RTOG 0212 and IFCT 99-01). Ann Oncol. 2011;22:1154–63.CrossRefPubMed
9.
go back to reference Slotman BJ, Mauer ME, Bottomley A, Faivre-Finn C, Kramer GWPM, Rankin EM, et al. Prophylactic cranial irradiation in extensive disease small-cell lung cancer: short-term health-related quality of life and patient reported symptoms: results of an international Phase III randomized controlled trial by the EORTC Radiation Oncology and Lung Cancer Groups. J Clin Oncol. 2009;27:78–84.CrossRefPubMed Slotman BJ, Mauer ME, Bottomley A, Faivre-Finn C, Kramer GWPM, Rankin EM, et al. Prophylactic cranial irradiation in extensive disease small-cell lung cancer: short-term health-related quality of life and patient reported symptoms: results of an international Phase III randomized controlled trial by the EORTC Radiation Oncology and Lung Cancer Groups. J Clin Oncol. 2009;27:78–84.CrossRefPubMed
11.
go back to reference Burgess N, Maguire EA, O’Keefe J. The human hippocampus and spatial and episodic memory. Neuron. 2002;35:625–41.CrossRefPubMed Burgess N, Maguire EA, O’Keefe J. The human hippocampus and spatial and episodic memory. Neuron. 2002;35:625–41.CrossRefPubMed
12.
go back to reference Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci. 2010;11:339–50.CrossRefPubMedPubMedCentral Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci. 2010;11:339–50.CrossRefPubMedPubMedCentral
13.
go back to reference Ferrer I, Serrano T, Alcantara S, Tortosa A, Graus F. X-ray-induced cell death in the developing hippocampal complex involves neurons and requires protein synthesis. J Neuropathol Exp Neurol. 1993;52:370–8.CrossRefPubMed Ferrer I, Serrano T, Alcantara S, Tortosa A, Graus F. X-ray-induced cell death in the developing hippocampal complex involves neurons and requires protein synthesis. J Neuropathol Exp Neurol. 1993;52:370–8.CrossRefPubMed
14.
go back to reference Raber J, Rola R, LeFevour A, Morhardt D, Curley J, Mizumatsu S, et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res. 2004;162:39–47.CrossRefPubMed Raber J, Rola R, LeFevour A, Morhardt D, Curley J, Mizumatsu S, et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res. 2004;162:39–47.CrossRefPubMed
15.
go back to reference Nagai R, Tsunoda S, Hori Y, Asada H. Selective vulnerability to radiation in the hippocampal dentate granule cells. Surg Neurol. 2000;53:503–6 (discussion 506–7).CrossRefPubMed Nagai R, Tsunoda S, Hori Y, Asada H. Selective vulnerability to radiation in the hippocampal dentate granule cells. Surg Neurol. 2000;53:503–6 (discussion 506–7).CrossRefPubMed
16.
go back to reference Madsen TM, Kristjansen PEG, Bolwig TG, Wörtwein G. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience. 2003;119:635–42.CrossRefPubMed Madsen TM, Kristjansen PEG, Bolwig TG, Wörtwein G. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience. 2003;119:635–42.CrossRefPubMed
17.
go back to reference Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res. 2003;63:4021–7.PubMed Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res. 2003;63:4021–7.PubMed
18.
go back to reference Gondi V, Pugh SL, Tome WA, Caine C, Corn B, Kanner A, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol. 2014;32:3810–6.CrossRefPubMedPubMedCentral Gondi V, Pugh SL, Tome WA, Caine C, Corn B, Kanner A, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol. 2014;32:3810–6.CrossRefPubMedPubMedCentral
19.
go back to reference Gondi V, Tolakanahalli R, Mehta MP, Tewatia D, Rowley H, Kuo JS, et al. Hippocampal-sparing whole-brain radiotherapy: a “how-to” technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78:1244–52.CrossRefPubMedPubMedCentral Gondi V, Tolakanahalli R, Mehta MP, Tewatia D, Rowley H, Kuo JS, et al. Hippocampal-sparing whole-brain radiotherapy: a “how-to” technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78:1244–52.CrossRefPubMedPubMedCentral
20.
go back to reference Ghia A, Tomé WA, Thomas S, Cannon G, Khuntia D, Kuo JS, et al. Distribution of brain metastases in relation to the hippocampus: implications for neurocognitive functional preservation. Int J Radiat Oncol Biol Phys. 2007;68:971–7.CrossRefPubMed Ghia A, Tomé WA, Thomas S, Cannon G, Khuntia D, Kuo JS, et al. Distribution of brain metastases in relation to the hippocampus: implications for neurocognitive functional preservation. Int J Radiat Oncol Biol Phys. 2007;68:971–7.CrossRefPubMed
21.
go back to reference Gondi V, Tome WA, Marsh J, Struck A, Ghia A, Turian JV, et al. Estimated risk of perihippocampal disease progression after hippocampal avoidance during whole-brain radiotherapy: safety profile for RTOG 0933. Radiother Oncol. 2010;95:327–31.CrossRefPubMedPubMedCentral Gondi V, Tome WA, Marsh J, Struck A, Ghia A, Turian JV, et al. Estimated risk of perihippocampal disease progression after hippocampal avoidance during whole-brain radiotherapy: safety profile for RTOG 0933. Radiother Oncol. 2010;95:327–31.CrossRefPubMedPubMedCentral
22.
go back to reference Kundapur V, Ellchuk T, Ahmed S, Gondi V. Risk of hippocampal metastases in small cell lung cancer patients at presentation and after cranial irradiation: a safety profile study for hippocampal sparing during prophylactic or therapeutic cranial irradiation. Radiat Oncol Biol. 2015;91:781–6.CrossRef Kundapur V, Ellchuk T, Ahmed S, Gondi V. Risk of hippocampal metastases in small cell lung cancer patients at presentation and after cranial irradiation: a safety profile study for hippocampal sparing during prophylactic or therapeutic cranial irradiation. Radiat Oncol Biol. 2015;91:781–6.CrossRef
23.
go back to reference Van Kesteren Z, Olszewska A, Belderbos J, Van Vliet-Vroegindeweij C. The distribution of brain metastases in the perihippocampal region (Regarding Gondi et al., Radiother Oncol 2010;95:327–331). Radiother Oncol. 2011;98:144.CrossRef Van Kesteren Z, Olszewska A, Belderbos J, Van Vliet-Vroegindeweij C. The distribution of brain metastases in the perihippocampal region (Regarding Gondi et al., Radiother Oncol 2010;95:327–331). Radiother Oncol. 2011;98:144.CrossRef
24.
go back to reference Redmond KJ, Hales RK, Anderson-Keightly H, Zhou XC, Kummerlowe M, Sair HI, et al. Prospective study of hippocampal-sparing prophylactic cranial irradiation in limited-stage small cell lung cancer. Int J Radiat Oncol Biol Phys. 2017;98:603–11.CrossRefPubMed Redmond KJ, Hales RK, Anderson-Keightly H, Zhou XC, Kummerlowe M, Sair HI, et al. Prospective study of hippocampal-sparing prophylactic cranial irradiation in limited-stage small cell lung cancer. Int J Radiat Oncol Biol Phys. 2017;98:603–11.CrossRefPubMed
25.
go back to reference Duchesne S, Valdivia F, Robitaille N, Mouiha A, Valdivia FA, Bocchetta M, et al. Manual segmentation qualification platform for the EADC-ADNI harmonized protocol for hippocampal segmentation project. Alzheimer’s Dement. 2015;11:161–74.CrossRef Duchesne S, Valdivia F, Robitaille N, Mouiha A, Valdivia FA, Bocchetta M, et al. Manual segmentation qualification platform for the EADC-ADNI harmonized protocol for hippocampal segmentation project. Alzheimer’s Dement. 2015;11:161–74.CrossRef
26.
go back to reference Hsu F, Carolan H, Nichol A, Cao F, Nuraney N, Lee R, et al. Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for 1–3 brain metastases: a feasibility study using volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys. 2010;76:1480–5.CrossRefPubMed Hsu F, Carolan H, Nichol A, Cao F, Nuraney N, Lee R, et al. Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for 1–3 brain metastases: a feasibility study using volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys. 2010;76:1480–5.CrossRefPubMed
27.
go back to reference Gutiérrez AN, Westerly DC, Tomé WA, Jaradat HA, Mackie TR, Bentzen SM, et al. Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int J Radiat Oncol Biol Phys. 2007;69:589–97.CrossRefPubMedPubMedCentral Gutiérrez AN, Westerly DC, Tomé WA, Jaradat HA, Mackie TR, Bentzen SM, et al. Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int J Radiat Oncol Biol Phys. 2007;69:589–97.CrossRefPubMedPubMedCentral
28.
go back to reference Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.CrossRefPubMed Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.CrossRefPubMed
30.
go back to reference Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging. 2008;27:685–91.CrossRefPubMedPubMedCentral Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging. 2008;27:685–91.CrossRefPubMedPubMedCentral
31.
go back to reference Wolthaus JWH, van Herk M, Muller SH, Belderbos JSA, Lebesque JV, de Bois JA, et al. Fusion of respiration-correlated PET and CT scans: correlated lung tumour motion in anatomical and functional scans. Phys Med Biol. 2005;50:1569–83.CrossRefPubMed Wolthaus JWH, van Herk M, Muller SH, Belderbos JSA, Lebesque JV, de Bois JA, et al. Fusion of respiration-correlated PET and CT scans: correlated lung tumour motion in anatomical and functional scans. Phys Med Biol. 2005;50:1569–83.CrossRefPubMed
32.
go back to reference Kouwenhoven E, Giezen M, Struikmans H. Measuring the similarity of target volume delineations independent of the number of observers. Phys Med Biol. 2009;54:2863–73.CrossRefPubMed Kouwenhoven E, Giezen M, Struikmans H. Measuring the similarity of target volume delineations independent of the number of observers. Phys Med Biol. 2009;54:2863–73.CrossRefPubMed
33.
go back to reference Bartel F, Vrenken H, Bijma F, Barkhof F, Van Herk M, De Munck JC. Regional analysis of volumes and reproducibilities of automatic and manual hippocampal segmentations. PLoS ONE. 2017;12:e0166785.CrossRefPubMedPubMedCentral Bartel F, Vrenken H, Bijma F, Barkhof F, Van Herk M, De Munck JC. Regional analysis of volumes and reproducibilities of automatic and manual hippocampal segmentations. PLoS ONE. 2017;12:e0166785.CrossRefPubMedPubMedCentral
34.
go back to reference Steenbakkers RJHM, Duppen JC, Fitton I, Deurloo KEI, Zijp LJ, Comans EFI, et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys. 2006;64:435–48.CrossRefPubMed Steenbakkers RJHM, Duppen JC, Fitton I, Deurloo KEI, Zijp LJ, Comans EFI, et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys. 2006;64:435–48.CrossRefPubMed
35.
go back to reference Diwanji T, Snider JW, Koroulakis A, Feigenberg SJ, Mohindra P, Kwok Y, et al. Interobserver variability in atlas-based, manual segmentation of the hippocampus in patients with brain metastases. Int J Radiat Oncol Biol Phys. 2016;96:E130.CrossRef Diwanji T, Snider JW, Koroulakis A, Feigenberg SJ, Mohindra P, Kwok Y, et al. Interobserver variability in atlas-based, manual segmentation of the hippocampus in patients with brain metastases. Int J Radiat Oncol Biol Phys. 2016;96:E130.CrossRef
36.
go back to reference Barnes J, Foster J, Boyes RG, Pepple T, Moore EK, Schott JM, et al. A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus. Neuroimage. 2008;40:1655–71.CrossRefPubMed Barnes J, Foster J, Boyes RG, Pepple T, Moore EK, Schott JM, et al. A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus. Neuroimage. 2008;40:1655–71.CrossRefPubMed
37.
go back to reference Basso M, Yang J, Warren L, MacAvoy MG, Varma P, Bronen RA, et al. Volumetry of amygdala and hippocampus and memory performance in Alzheimer’s disease. Psychiatry Res Neuroimaging. 2006;146:251–61.CrossRef Basso M, Yang J, Warren L, MacAvoy MG, Varma P, Bronen RA, et al. Volumetry of amygdala and hippocampus and memory performance in Alzheimer’s disease. Psychiatry Res Neuroimaging. 2006;146:251–61.CrossRef
38.
go back to reference Jack CR Jr, Slomkowski M, Gracon S, Hoover TM, Felmlee JP, et al. MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology. 2003;60:253.CrossRefPubMed Jack CR Jr, Slomkowski M, Gracon S, Hoover TM, Felmlee JP, et al. MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology. 2003;60:253.CrossRefPubMed
39.
go back to reference Wenger E, Mårtensson J, Noack H, Bodammer NC, Kühn S, Schaefer S, et al. Comparing manual and automatic segmentation of hippocampal volumes: reliability and validity issues in younger and older brains. Hum Brain Mapp. 2014;35:4236–48.CrossRefPubMedPubMedCentral Wenger E, Mårtensson J, Noack H, Bodammer NC, Kühn S, Schaefer S, et al. Comparing manual and automatic segmentation of hippocampal volumes: reliability and validity issues in younger and older brains. Hum Brain Mapp. 2014;35:4236–48.CrossRefPubMedPubMedCentral
40.
go back to reference Boccardi M, Ganzola R, Bocchetta M, Pievani M, Redolfi A, Bartzokis G, et al. Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol. Adv Alzheimer’s Dis. 2011;2:111–25. Boccardi M, Ganzola R, Bocchetta M, Pievani M, Redolfi A, Bartzokis G, et al. Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol. Adv Alzheimer’s Dis. 2011;2:111–25.
41.
go back to reference Dill V, Franco AR, Pinho MS. Automated methods for hippocampus segmentation: the evolution and a review of the state of the art. Neuroinformatics. 2015;13:133–50.CrossRefPubMed Dill V, Franco AR, Pinho MS. Automated methods for hippocampus segmentation: the evolution and a review of the state of the art. Neuroinformatics. 2015;13:133–50.CrossRefPubMed
42.
go back to reference Di Biase S, Trignani M, Caravatta L, Voicu PI, Di Carlo C, Vinciguerra A, et al. Development of a contouring guide in three different head set-ups for hippocampal sparing radiotherapy: a practical approach. Radiol Med. 2017;122:683–9.CrossRefPubMed Di Biase S, Trignani M, Caravatta L, Voicu PI, Di Carlo C, Vinciguerra A, et al. Development of a contouring guide in three different head set-ups for hippocampal sparing radiotherapy: a practical approach. Radiol Med. 2017;122:683–9.CrossRefPubMed
43.
go back to reference Carmichael OT, Aizenstein HA, Davis SW, Becker JT, Thompson PM, Meltzer CC, et al. Atlas-based hippocampus segmentation in Alzheimer’s disease and mild cognitive impairment. Neuroimage. 2005;27:979–90.CrossRefPubMed Carmichael OT, Aizenstein HA, Davis SW, Becker JT, Thompson PM, Meltzer CC, et al. Atlas-based hippocampus segmentation in Alzheimer’s disease and mild cognitive impairment. Neuroimage. 2005;27:979–90.CrossRefPubMed
44.
go back to reference Kindts I, Vandermeulen A, Verhoeven K, Laenen A, Hortobágyi E, Weltens CG. A central review platform improves the quality of regional lymph node delineation for breast cancer radiation therapy. Int J Radiat Oncol. 2016;96:E38–9.CrossRef Kindts I, Vandermeulen A, Verhoeven K, Laenen A, Hortobágyi E, Weltens CG. A central review platform improves the quality of regional lymph node delineation for breast cancer radiation therapy. Int J Radiat Oncol. 2016;96:E38–9.CrossRef
45.
go back to reference Joye I, Lambrecht M, Jegou D, Hortobágyi E, Scalliet P, Haustermans K. Does a central review platform improve the quality of radiotherapy for rectal cancer? Results of a national quality assurance project. Radiother Oncol. 2014;111:400–5.CrossRefPubMed Joye I, Lambrecht M, Jegou D, Hortobágyi E, Scalliet P, Haustermans K. Does a central review platform improve the quality of radiotherapy for rectal cancer? Results of a national quality assurance project. Radiother Oncol. 2014;111:400–5.CrossRefPubMed
46.
go back to reference Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage. 2011;56:907–22.CrossRefPubMed Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage. 2011;56:907–22.CrossRefPubMed
47.
go back to reference Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage. 2012;61:1402–18.CrossRefPubMed Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage. 2012;61:1402–18.CrossRefPubMed
48.
go back to reference Morey RA, Petty CM, Xu Y, Pannu Hayes J, Wagner HR, Lewis DV, et al. A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage. 2009;45:855–66.CrossRefPubMed Morey RA, Petty CM, Xu Y, Pannu Hayes J, Wagner HR, Lewis DV, et al. A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage. 2009;45:855–66.CrossRefPubMed
49.
go back to reference Morey RA, Selgrade ES, Wagner HR, Huettel SA, Wang L, McCarthy G. Scan-rescan reliability of subcortical brain volumes derived from automated segmentation. Hum Brain Mapp. 2010;31:1751–62.PubMedPubMedCentral Morey RA, Selgrade ES, Wagner HR, Huettel SA, Wang L, McCarthy G. Scan-rescan reliability of subcortical brain volumes derived from automated segmentation. Hum Brain Mapp. 2010;31:1751–62.PubMedPubMedCentral
50.
go back to reference Pardoe HR, Pell GS, Abbott DF, Jackson GD. Hippocampal volume assessment in temporal lobe epilepsy: how good is automated segmentation? Epilepsia. 2009;50:2586–92.CrossRefPubMedPubMedCentral Pardoe HR, Pell GS, Abbott DF, Jackson GD. Hippocampal volume assessment in temporal lobe epilepsy: how good is automated segmentation? Epilepsia. 2009;50:2586–92.CrossRefPubMedPubMedCentral
51.
go back to reference Doring TM, Kubo TTA, Cruz LCH, Juruena MF, Fainberg J, Domingues RC, et al. Evaluation of hippocampal volume based on MR imaging in patients with bipolar affective disorder applying manual and automatic segmentation techniques. J Magn Reson Imaging. 2011;33:565–72.CrossRefPubMed Doring TM, Kubo TTA, Cruz LCH, Juruena MF, Fainberg J, Domingues RC, et al. Evaluation of hippocampal volume based on MR imaging in patients with bipolar affective disorder applying manual and automatic segmentation techniques. J Magn Reson Imaging. 2011;33:565–72.CrossRefPubMed
52.
go back to reference Mulder ER, de Jong RA, Knol DL, van Schijndel RA, Cover KS, Visser PJ, et al. Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST. Neuroimage. 2014;92:169–81.CrossRefPubMed Mulder ER, de Jong RA, Knol DL, van Schijndel RA, Cover KS, Visser PJ, et al. Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST. Neuroimage. 2014;92:169–81.CrossRefPubMed
53.
go back to reference Wang H, Suh JW, Das SR, Pluta JB, Craige C, Yushkevich PA. Multi-atlas segmentation with joint label fusion. IEEE Trans Pattern Anal Mach Intell. 2013;35:611–23.CrossRefPubMed Wang H, Suh JW, Das SR, Pluta JB, Craige C, Yushkevich PA. Multi-atlas segmentation with joint label fusion. IEEE Trans Pattern Anal Mach Intell. 2013;35:611–23.CrossRefPubMed
54.
go back to reference Zhu H, Cheng H, Yang X, Fan Y. Alzheimer’s disease neuroimaging initiative. metric learning for multi-atlas based segmentation of hippocampus. Neuroinformatics. 2017;15:41–50.CrossRefPubMedPubMedCentral Zhu H, Cheng H, Yang X, Fan Y. Alzheimer’s disease neuroimaging initiative. metric learning for multi-atlas based segmentation of hippocampus. Neuroinformatics. 2017;15:41–50.CrossRefPubMedPubMedCentral
Metadata
Title
Inter-observer variation of hippocampus delineation in hippocampal avoidance prophylactic cranial irradiation
Authors
F. Bartel
M. van Herk
H. Vrenken
F. Vandaele
S. Sunaert
K. de Jaeger
N. J. Dollekamp
C. Carbaat
E. Lamers
E. M. T. Dieleman
Y. Lievens
D. de Ruysscher
S. B. Schagen
M. B. de Ruiter
J. C. de Munck
J. Belderbos
Publication date
01-02-2019
Publisher
Springer International Publishing
Published in
Clinical and Translational Oncology / Issue 2/2019
Print ISSN: 1699-048X
Electronic ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-018-1903-7

Other articles of this Issue 2/2019

Clinical and Translational Oncology 2/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine