Skip to main content
Top
Published in: Clinical and Translational Oncology 9/2016

01-09-2016 | Review Article

The emerging role of Snail1 in the tumor stroma

Authors: A. Herrera, M. Herrera, C. Peña

Published in: Clinical and Translational Oncology | Issue 9/2016

Login to get access

Abstract

The transcription factor Snail1 leads to the epithelial–mesenchymal transition by repressing the adherent and tight junctions in epithelial cells. This process is related to an increase of cell migratory and mesenchymal properties during both embryonic development and tumor progression. Although Snail1 expression is very limited in adult animals, emerging evidence has placed Snail at the forefront of medical science. As a transcriptional repressor, Snail1 confers cancer stem cell-like traits on tumor cells and promotes drug resistance, tumor recurrence and metastasis. In this review, we summarize recent reports that suggest the pro-tumorigenic roles of Snail1 expression in tumor stroma. The crosstalk between tumor and stromal cells mediated by Snail1 regulates paracrine communication, pro-tumorigenic abilities of cancer cells, extracellular matrix characteristics and mesenchymal differentiation in cancer stem cells and cancer-associated fibroblasts. Therefore, understanding the regulation and functional roles of Snail1 in the tumor microenvironment will provide us with new therapies for treating metastatic disease.
Literature
1.
go back to reference Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3:155–66.CrossRefPubMed Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3:155–66.CrossRefPubMed
2.
go back to reference Alberga A, Boulay JL, Kempe E, Dennefeld C, Haenlin M. The snail gene required for mesoderm formation in Drosophila is expressed dynamically in derivatives of all three germ layers. Dev Camb Engl. 1991;111:983–92. Alberga A, Boulay JL, Kempe E, Dennefeld C, Haenlin M. The snail gene required for mesoderm formation in Drosophila is expressed dynamically in derivatives of all three germ layers. Dev Camb Engl. 1991;111:983–92.
3.
go back to reference Hemavathy K, Hu X, Ashraf SI, Small SJ, Ip YT. The repressor function of snail is required for Drosophila gastrulation and is not replaceable by Escargot or Worniu. Dev Biol. 2004;269:411–20.CrossRefPubMed Hemavathy K, Hu X, Ashraf SI, Small SJ, Ip YT. The repressor function of snail is required for Drosophila gastrulation and is not replaceable by Escargot or Worniu. Dev Biol. 2004;269:411–20.CrossRefPubMed
4.
go back to reference Murray SA, Oram KF, Gridley T. Multiple functions of Snail family genes during palate development in mice. Development. 2007;134:1789–97.CrossRefPubMed Murray SA, Oram KF, Gridley T. Multiple functions of Snail family genes during palate development in mice. Development. 2007;134:1789–97.CrossRefPubMed
5.
go back to reference Batlle R, Alba-Castellón L, Loubat-Casanovas J, Armenteros E, Francí C, Stanisavljevic J, et al. Snail1 controls TGF-β responsiveness and differentiation of mesenchymal stem cells. Oncogene. 2013;32:3381–9.CrossRefPubMed Batlle R, Alba-Castellón L, Loubat-Casanovas J, Armenteros E, Francí C, Stanisavljevic J, et al. Snail1 controls TGF-β responsiveness and differentiation of mesenchymal stem cells. Oncogene. 2013;32:3381–9.CrossRefPubMed
7.
go back to reference Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol. 2011;27:347–76.CrossRefPubMed Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol. 2011;27:347–76.CrossRefPubMed
8.
go back to reference Tse JC, Kalluri R. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 2007;101:816–29.CrossRefPubMed Tse JC, Kalluri R. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 2007;101:816–29.CrossRefPubMed
10.
go back to reference Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139:871–90.CrossRefPubMed Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139:871–90.CrossRefPubMed
11.
go back to reference Alves CC, Rosivatz E, Schott C, Hollweck R, Becker I, Sarbia M, et al. Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin. J. Pathol. 2007;211:507–15.CrossRef Alves CC, Rosivatz E, Schott C, Hollweck R, Becker I, Sarbia M, et al. Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin. J. Pathol. 2007;211:507–15.CrossRef
12.
go back to reference Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene. 2002;21:3241–6.CrossRefPubMed Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene. 2002;21:3241–6.CrossRefPubMed
13.
go back to reference Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.CrossRefPubMed Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.CrossRefPubMed
14.
go back to reference DiMeo TA, Anderson K, Phadke P, Feng C, Perou CM, Naber S, et al. A novel lung metastasis signature links Wnt Signaling with cancer cell self-renewal and epithelial–mesenchymal transition in basal-like breast cancer. Cancer Res. 2009;69:5364–73.CrossRefPubMedPubMedCentral DiMeo TA, Anderson K, Phadke P, Feng C, Perou CM, Naber S, et al. A novel lung metastasis signature links Wnt Signaling with cancer cell self-renewal and epithelial–mesenchymal transition in basal-like breast cancer. Cancer Res. 2009;69:5364–73.CrossRefPubMedPubMedCentral
15.
go back to reference Elloul S, Bukholt Elstrand M, Nesland JM, Tropé CG, Kvalheim G, Goldberg I, et al. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005;103:1631–43.CrossRefPubMed Elloul S, Bukholt Elstrand M, Nesland JM, Tropé CG, Kvalheim G, Goldberg I, et al. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005;103:1631–43.CrossRefPubMed
16.
go back to reference Emadi Baygi M, Soheili ZS, Schmitz I, Sameie S, Schulz WA. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines. Cell Biol Toxicol. 2010;26:553–67.CrossRefPubMed Emadi Baygi M, Soheili ZS, Schmitz I, Sameie S, Schulz WA. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines. Cell Biol Toxicol. 2010;26:553–67.CrossRefPubMed
17.
go back to reference Francí C, Gallén M, Alameda F, Baró T, Iglesias M, Virtanen I, et al. Snail1 Protein in the Stroma as a New Putative Prognosis Marker for Colon Tumours. In: Callaerts P, editor. PLoS One. 2009;4:e5595. Francí C, Gallén M, Alameda F, Baró T, Iglesias M, Virtanen I, et al. Snail1 Protein in the Stroma as a New Putative Prognosis Marker for Colon Tumours. In: Callaerts P, editor. PLoS One. 2009;4:e5595.
18.
go back to reference Kuphal S, Palm HG, Poser I, Bosserhoff AK. Snail-regulated genes in malignant melanoma. Melanoma Res. 2005;15:305–13.CrossRefPubMed Kuphal S, Palm HG, Poser I, Bosserhoff AK. Snail-regulated genes in malignant melanoma. Melanoma Res. 2005;15:305–13.CrossRefPubMed
19.
go back to reference Martin TA, Goyal A, Watkins G, Jiang WG. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol. 2005;12:488–96.CrossRefPubMed Martin TA, Goyal A, Watkins G, Jiang WG. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol. 2005;12:488–96.CrossRefPubMed
20.
21.
go back to reference Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, et al. The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–9.CrossRefPubMed Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, et al. The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–9.CrossRefPubMed
22.
go back to reference Peña C, García JM, Larriba MJ, Barderas R, Gómez I, Herrera M, et al. SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue. Oncogene. 2009;28:4375–85.CrossRefPubMed Peña C, García JM, Larriba MJ, Barderas R, Gómez I, Herrera M, et al. SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue. Oncogene. 2009;28:4375–85.CrossRefPubMed
23.
go back to reference Peña C, García JM, Silva J, García V, Rodríguez R, Alonso I, et al. E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Hum Mol Genet. 2005;14:3361–70.CrossRefPubMed Peña C, García JM, Silva J, García V, Rodríguez R, Alonso I, et al. E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Hum Mol Genet. 2005;14:3361–70.CrossRefPubMed
25.
go back to reference Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2:727–39.CrossRefPubMed Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2:727–39.CrossRefPubMed
26.
go back to reference Xouri G, Christian S. Origin and function of tumor stroma fibroblasts. Semin Cell Dev Biol. 2010;21:40–6.CrossRefPubMed Xouri G, Christian S. Origin and function of tumor stroma fibroblasts. Semin Cell Dev Biol. 2010;21:40–6.CrossRefPubMed
27.
go back to reference Allen M, Louise Jones J. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J. Pathol. 2011;223:163–77.CrossRef Allen M, Louise Jones J. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J. Pathol. 2011;223:163–77.CrossRef
28.
go back to reference Augsten M, Hägglöf C, Peña C, Östman A. A digest on the role of the tumor microenvironment in gastrointestinal cancers. Cancer Microenviron. 2010;3:167–76.CrossRefPubMedPubMedCentral Augsten M, Hägglöf C, Peña C, Östman A. A digest on the role of the tumor microenvironment in gastrointestinal cancers. Cancer Microenviron. 2010;3:167–76.CrossRefPubMedPubMedCentral
29.
go back to reference Herrera M, Islam ABMMK, Herrera A, Martin P, Garcia V, Silva J, et al. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature. Clin Cancer Res. 2013;19:5914–26.CrossRefPubMed Herrera M, Islam ABMMK, Herrera A, Martin P, Garcia V, Silva J, et al. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature. Clin Cancer Res. 2013;19:5914–26.CrossRefPubMed
30.
go back to reference Mueller L, Goumas FA, Affeldt M, Sandtner S, Gehling UM, Brilloff S, et al. Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol. 2007;171:1608–18.CrossRefPubMedPubMedCentral Mueller L, Goumas FA, Affeldt M, Sandtner S, Gehling UM, Brilloff S, et al. Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol. 2007;171:1608–18.CrossRefPubMedPubMedCentral
31.
go back to reference Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2004;2:e7.CrossRefPubMedPubMedCentral Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2004;2:e7.CrossRefPubMedPubMedCentral
32.
33.
go back to reference Beacham DA, Cukierman E. Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol. 2005;15:329–41.CrossRefPubMed Beacham DA, Cukierman E. Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol. 2005;15:329–41.CrossRefPubMed
35.
go back to reference Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle. 2006;5:1597–601.CrossRefPubMed Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle. 2006;5:1597–601.CrossRefPubMed
36.
go back to reference Qian B-Z, Pollard JW, Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.CrossRefPubMed Qian B-Z, Pollard JW, Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.CrossRefPubMed
37.
go back to reference Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther. 2006;5:1640–6.CrossRefPubMed Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther. 2006;5:1640–6.CrossRefPubMed
38.
go back to reference Franci C, Takkunen M, Dave N, Alameda F, Gomez S, Rodriguez R, et al. Expression of Snail protein in tumor-stroma interface. Oncogene. 2006;25:5134–44.PubMed Franci C, Takkunen M, Dave N, Alameda F, Gomez S, Rodriguez R, et al. Expression of Snail protein in tumor-stroma interface. Oncogene. 2006;25:5134–44.PubMed
39.
go back to reference Stanisavljevic J, Loubat-Casanovas J, Herrera M, Luque T, Pena R, Lluch A, et al. Snail1-expressing fibroblasts in the tumor microenvironment display mechanical properties that support metastasis. Cancer Res. 2015;75:284–95.CrossRefPubMed Stanisavljevic J, Loubat-Casanovas J, Herrera M, Luque T, Pena R, Lluch A, et al. Snail1-expressing fibroblasts in the tumor microenvironment display mechanical properties that support metastasis. Cancer Res. 2015;75:284–95.CrossRefPubMed
40.
go back to reference Alba-Castellón L, Batlle R, Francí C, Fernández-Aceñero MJ, Mazzolini R, Peña R, et al. Snail1 expression is required for sarcomagenesis. Neoplasia. 2014;16:413–21.CrossRefPubMedPubMedCentral Alba-Castellón L, Batlle R, Francí C, Fernández-Aceñero MJ, Mazzolini R, Peña R, et al. Snail1 expression is required for sarcomagenesis. Neoplasia. 2014;16:413–21.CrossRefPubMedPubMedCentral
41.
go back to reference Chen S-Y, Shiau A-L, Li Y-T, Lin C-C, Jou I-M, Liu M-F, et al. Transcription factor snail regulates tumor necrosis factor α-mediated synovial fibroblast activation in the rheumatoid joint: snail regulates TNFα-mediated synovial fibroblast activation. Arthritis Rheumatol. 2015;67:39–50.CrossRefPubMed Chen S-Y, Shiau A-L, Li Y-T, Lin C-C, Jou I-M, Liu M-F, et al. Transcription factor snail regulates tumor necrosis factor α-mediated synovial fibroblast activation in the rheumatoid joint: snail regulates TNFα-mediated synovial fibroblast activation. Arthritis Rheumatol. 2015;67:39–50.CrossRefPubMed
42.
go back to reference Rowe RG, Li X-Y, Hu Y, Saunders TL, Virtanen I, de Herreros AG, et al. Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs. J Cell Biol. 2009;184:399–408.CrossRefPubMedPubMedCentral Rowe RG, Li X-Y, Hu Y, Saunders TL, Virtanen I, de Herreros AG, et al. Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs. J Cell Biol. 2009;184:399–408.CrossRefPubMedPubMedCentral
43.
go back to reference Rosivatz E, Becker K-F, Kremmer E, Schott C, Blechschmidt K, Höfler H, et al. Expression and nuclear localization of Snail, an E-cadherin repressor, in adenocarcinomas of the upper gastrointestinal tract. Virchows Arch. 2006;448:277–87.CrossRefPubMed Rosivatz E, Becker K-F, Kremmer E, Schott C, Blechschmidt K, Höfler H, et al. Expression and nuclear localization of Snail, an E-cadherin repressor, in adenocarcinomas of the upper gastrointestinal tract. Virchows Arch. 2006;448:277–87.CrossRefPubMed
44.
go back to reference Liu S, Liao G, Ding J, Ye K, Zhang Y, Zeng L, et al. Dysregulated expression of Snail and E-cadherin correlates with gastrointestinal stromal tumor metastasis. Eur J Cancer Prev. 2014;23:329–35.CrossRefPubMed Liu S, Liao G, Ding J, Ye K, Zhang Y, Zeng L, et al. Dysregulated expression of Snail and E-cadherin correlates with gastrointestinal stromal tumor metastasis. Eur J Cancer Prev. 2014;23:329–35.CrossRefPubMed
45.
go back to reference Jouppila-Mättö A, Tuhkanen H, Soini Y, Pukkila M, Närkiö-Mäkelä M, Sironen R, et al. Transcription factor Snail1 expression and poor survival in pharyngeal squamous cell carcinoma. Histol Histopathol. 2011;26:443–9.PubMed Jouppila-Mättö A, Tuhkanen H, Soini Y, Pukkila M, Närkiö-Mäkelä M, Sironen R, et al. Transcription factor Snail1 expression and poor survival in pharyngeal squamous cell carcinoma. Histol Histopathol. 2011;26:443–9.PubMed
46.
go back to reference Schulte J, Weidig M, Balzer P, Richter P, Franz M, Junker K, et al. Expression of the E-cadherin repressors Snail, Slug and Zeb1 in urothelial carcinoma of the urinary bladder: relation to stromal fibroblast activation and invasive behaviour of carcinoma cells. Histochem Cell Biol. 2012;138:847–60.CrossRefPubMed Schulte J, Weidig M, Balzer P, Richter P, Franz M, Junker K, et al. Expression of the E-cadherin repressors Snail, Slug and Zeb1 in urothelial carcinoma of the urinary bladder: relation to stromal fibroblast activation and invasive behaviour of carcinoma cells. Histochem Cell Biol. 2012;138:847–60.CrossRefPubMed
47.
go back to reference Herrera A, Herrera M, Alba-Castellón L, Silva J, García V, Loubat-Casanovas J, et al. Protumorigenic effects of Snail-expression fibroblasts on colon cancer cells. Int J Cancer. 2014;134:2984–90.CrossRefPubMed Herrera A, Herrera M, Alba-Castellón L, Silva J, García V, Loubat-Casanovas J, et al. Protumorigenic effects of Snail-expression fibroblasts on colon cancer cells. Int J Cancer. 2014;134:2984–90.CrossRefPubMed
48.
go back to reference Hu W, Li C, Sun J, Feng B, Zhang D, Ma J, et al. Cancer-associated-fibroblast induces epithelial–mesenchymal transition of gastric cancer cells via activating Thy-1. J Carcinog Mutagen. 2014;5:1–10. Hu W, Li C, Sun J, Feng B, Zhang D, Ma J, et al. Cancer-associated-fibroblast induces epithelial–mesenchymal transition of gastric cancer cells via activating Thy-1. J Carcinog Mutagen. 2014;5:1–10.
49.
go back to reference Peláez-García A, Barderas R, Batlle R, Viñas-Castells R, Bartolomé RA, Torres S, et al. A proteomic analysis reveals that snail regulates the expression of the nuclear orphan receptor nuclear receptor subfamily 2 Group F Member 6 (Nr2f6) and Interleukin 17 (IL-17) to inhibit adipocyte differentiation. Mol Cell Proteom. 2015;14:303–15.CrossRef Peláez-García A, Barderas R, Batlle R, Viñas-Castells R, Bartolomé RA, Torres S, et al. A proteomic analysis reveals that snail regulates the expression of the nuclear orphan receptor nuclear receptor subfamily 2 Group F Member 6 (Nr2f6) and Interleukin 17 (IL-17) to inhibit adipocyte differentiation. Mol Cell Proteom. 2015;14:303–15.CrossRef
50.
go back to reference Torres S, Bartolome RA, Mendes M, Barderas R, Fernandez-Acenero MJ, Pelaez-Garcia A, et al. proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res. 2013;19:6006–19.CrossRefPubMed Torres S, Bartolome RA, Mendes M, Barderas R, Fernandez-Acenero MJ, Pelaez-Garcia A, et al. proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res. 2013;19:6006–19.CrossRefPubMed
52.
go back to reference Lu C, Sun X, Sun L, Sun J, Lu Y, Yu X, et al. Snail mediates PDGF-BB-induced invasion of rat bone marrow mesenchymal stem cells in 3D collagen and chick chorioallantoic membrane. J Cell Physiol. 2013;228:1827–33.CrossRefPubMed Lu C, Sun X, Sun L, Sun J, Lu Y, Yu X, et al. Snail mediates PDGF-BB-induced invasion of rat bone marrow mesenchymal stem cells in 3D collagen and chick chorioallantoic membrane. J Cell Physiol. 2013;228:1827–33.CrossRefPubMed
53.
go back to reference Shields MA, Dangi-Garimella S, Krantz SB, Bentrem DJ, Munshi HG. Pancreatic cancer cells respond to Type I collagen by inducing snail expression to promote membrane type 1 matrix metalloproteinase-dependent collagen invasion. J Biol Chem. 2011;286:10495–504.CrossRefPubMedPubMedCentral Shields MA, Dangi-Garimella S, Krantz SB, Bentrem DJ, Munshi HG. Pancreatic cancer cells respond to Type I collagen by inducing snail expression to promote membrane type 1 matrix metalloproteinase-dependent collagen invasion. J Biol Chem. 2011;286:10495–504.CrossRefPubMedPubMedCentral
54.
go back to reference Shields MA, Krantz SB, Bentrem DJ, Dangi-Garimella S, Munshi HG. Interplay between 1-integrin and rho signaling regulates differential scattering and motility of pancreatic cancer cells by snail and slug proteins. J Biol Chem. 2012;287:6218–29.CrossRefPubMedPubMedCentral Shields MA, Krantz SB, Bentrem DJ, Dangi-Garimella S, Munshi HG. Interplay between 1-integrin and rho signaling regulates differential scattering and motility of pancreatic cancer cells by snail and slug proteins. J Biol Chem. 2012;287:6218–29.CrossRefPubMedPubMedCentral
55.
go back to reference Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, et al. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol. 2013;15:677–87.CrossRefPubMedPubMedCentral Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, et al. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol. 2013;15:677–87.CrossRefPubMedPubMedCentral
56.
go back to reference Stanisavljevic J, Porta-de-la-Riva M, Batlle R, de Herreros AG, Baulida J. The p65 subunit of NF- B and PARP1 assist Snail1 in activating fibronectin transcription. J Cell Sci. 2011;124:4161–71.CrossRefPubMed Stanisavljevic J, Porta-de-la-Riva M, Batlle R, de Herreros AG, Baulida J. The p65 subunit of NF- B and PARP1 assist Snail1 in activating fibronectin transcription. J Cell Sci. 2011;124:4161–71.CrossRefPubMed
57.
go back to reference Quante M, Tu SP, Tomita H, Gonda T, Wang SSW, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19:257–72.CrossRefPubMedPubMedCentral Quante M, Tu SP, Tomita H, Gonda T, Wang SSW, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19:257–72.CrossRefPubMedPubMedCentral
58.
go back to reference Li X-Y, Zhou X, Rowe RG, Hu Y, Schlaepfer DD, Ilic D, et al. Snail1 controls epithelial–mesenchymal lineage commitment in focal adhesion kinase-null embryonic cells. J Cell Biol. 2011;195:729–38.CrossRefPubMedPubMedCentral Li X-Y, Zhou X, Rowe RG, Hu Y, Schlaepfer DD, Ilic D, et al. Snail1 controls epithelial–mesenchymal lineage commitment in focal adhesion kinase-null embryonic cells. J Cell Biol. 2011;195:729–38.CrossRefPubMedPubMedCentral
59.
go back to reference Lee Y, Kim SH, Lee YJ, Kang ES, Lee B-W, Cha BS, et al. Transcription factor Snail is a novel regulator of adipocyte differentiation via inhibiting the expression of peroxisome proliferator-activated receptor γ. Cell Mol Life Sci. 2013;70:3959–71.CrossRefPubMed Lee Y, Kim SH, Lee YJ, Kang ES, Lee B-W, Cha BS, et al. Transcription factor Snail is a novel regulator of adipocyte differentiation via inhibiting the expression of peroxisome proliferator-activated receptor γ. Cell Mol Life Sci. 2013;70:3959–71.CrossRefPubMed
60.
go back to reference de Frutos CA, Dacquin R, Vega S, Jurdic P, Machuca-Gayet I. Angela Nieto M. Snail1 controls bone mass by regulating Runx2 and VDR expression during osteoblast differentiation. EMBO J. 2009;28:686–96.CrossRefPubMedPubMedCentral de Frutos CA, Dacquin R, Vega S, Jurdic P, Machuca-Gayet I. Angela Nieto M. Snail1 controls bone mass by regulating Runx2 and VDR expression during osteoblast differentiation. EMBO J. 2009;28:686–96.CrossRefPubMedPubMedCentral
61.
Metadata
Title
The emerging role of Snail1 in the tumor stroma
Authors
A. Herrera
M. Herrera
C. Peña
Publication date
01-09-2016
Publisher
Springer International Publishing
Published in
Clinical and Translational Oncology / Issue 9/2016
Print ISSN: 1699-048X
Electronic ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-015-1474-9

Other articles of this Issue 9/2016

Clinical and Translational Oncology 9/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine