Skip to main content
Top
Published in: Clinical and Translational Oncology 4/2016

01-04-2016 | Research Article

Familial hematological malignancies: ASXL1 gene investigation

Authors: W. S. Hamadou, R. E. Abed, S. Besbes, V. Bourdon, A. Fabre, Y. B. Youssef, M. A. Laatiri, F. Eisinger, V. Mari, P. Gesta, H. Dreyfus, V. Bonadona, C. Dugast, H. Zattara, L. Faivre, S. Y. Jemni, T. Noguchi, A. Khélif, H. Sobol, Z. Soua

Published in: Clinical and Translational Oncology | Issue 4/2016

Login to get access

Abstract

Purpose

Familial aggregation among patients with several hematological malignancies has been revealed. This emphasizes the importance of genetic factors. Only few genes predisposing to familial hematological malignancies have been reported until now due to the low occurrence. We have described in previous study PRF1 and CEBPA variants that might contribute to the background of genetic factors, which encourage us to extend our investigations to other cooperating genes. The aim of this study is to determine whether germline additional sex combs-like 1 (ASXL1) gene mutations may be involved?

Methods/patients

In this study, we investigated the candidate gene ASXL1 by direct sequencing in 88 unrelated Tunisian and French families with aggregated hematological malignancies.

Results

We report a new p.Arg402Gln germline missense substitution in two related Tunisian patients which has not been previously described. We identified here this variant for the first time in non-Hodgkin lymphoma. The p.Arg402Gln variant was not found in 200 control chromosomes. In silico analysis has predicted potential deleterious effect on ASXL1 protein.

Conclusions

From an extended candidate genes analyzed in the field of familial hematological malignancies, ASXL1 might be involved. This variant should be considered since a potential damaging effect was predicted by in silico analysis, with a view to develop functional assay in order to investigate the biological assessment.
Literature
1.
go back to reference Cho YS, Kim EJ, Park UH, Sin HS, Um SJ. Additional sex comb-like 1 (ASXL1), in cooperation with SRC-1, acts as a ligand-dependent coactivator for retinoic acid receptor. JBC. 2006;281:17588–98.CrossRef Cho YS, Kim EJ, Park UH, Sin HS, Um SJ. Additional sex comb-like 1 (ASXL1), in cooperation with SRC-1, acts as a ligand-dependent coactivator for retinoic acid receptor. JBC. 2006;281:17588–98.CrossRef
2.
go back to reference Aravind L, Iyer LM. The HARE-HTH and associated domains: novel modules in the coordination of epigenetic DNA and protein modifications. Cell Cycle. 2012;11:119–31.CrossRefPubMedPubMedCentral Aravind L, Iyer LM. The HARE-HTH and associated domains: novel modules in the coordination of epigenetic DNA and protein modifications. Cell Cycle. 2012;11:119–31.CrossRefPubMedPubMedCentral
3.
go back to reference Lee SW, Cho YS, Na JM, Park UH, Kang M, Kim EJ, et al. ASXL1 represses retinoic acid receptor mediated transcription through associating with HP1 and LSD1. JBC. 2010;285:18–29.CrossRef Lee SW, Cho YS, Na JM, Park UH, Kang M, Kim EJ, et al. ASXL1 represses retinoic acid receptor mediated transcription through associating with HP1 and LSD1. JBC. 2010;285:18–29.CrossRef
4.
go back to reference Huang HS, Matevossian A, Whittle C, Kim SY, Schumacher A, Baker SP, et al. Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J Neurosci. 2007;27:11254–62.CrossRefPubMed Huang HS, Matevossian A, Whittle C, Kim SY, Schumacher A, Baker SP, et al. Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J Neurosci. 2007;27:11254–62.CrossRefPubMed
5.
go back to reference Ringrose L, Paro R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development. 2007;134:223–32.CrossRefPubMed Ringrose L, Paro R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development. 2007;134:223–32.CrossRefPubMed
6.
go back to reference Schwartz YB, Pirrotta V. Polycomb silencing mechanisms and the management of genomic programmes. Nature Rev Genet. 2007;8:9–22.CrossRefPubMed Schwartz YB, Pirrotta V. Polycomb silencing mechanisms and the management of genomic programmes. Nature Rev Genet. 2007;8:9–22.CrossRefPubMed
7.
go back to reference Carbuccia N, Murati A, Trouplin V, Brecqueville M, Adélaïde J, Rey J, et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia. 2009;23:2183–6.CrossRefPubMed Carbuccia N, Murati A, Trouplin V, Brecqueville M, Adélaïde J, Rey J, et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia. 2009;23:2183–6.CrossRefPubMed
8.
go back to reference Gelsi-Boyer V, Trouplin V, Adelaide J, Bonansea J, Cervera N, Carbuccia N, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145:788–800.CrossRefPubMed Gelsi-Boyer V, Trouplin V, Adelaide J, Bonansea J, Cervera N, Carbuccia N, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145:788–800.CrossRefPubMed
9.
go back to reference Chen TC, Hou HA, Chou WC, Tang JL, Kuo YY, Chen CY, et al. Dynamics of ASXL1 mutation and other associated genetic alterations during disease progression in patients with primary myelodysplastic syndrome. Blood Cancer J. 2014;4:177–85.CrossRef Chen TC, Hou HA, Chou WC, Tang JL, Kuo YY, Chen CY, et al. Dynamics of ASXL1 mutation and other associated genetic alterations during disease progression in patients with primary myelodysplastic syndrome. Blood Cancer J. 2014;4:177–85.CrossRef
10.
go back to reference Hoischen A, van Bon BW, Rodriguez-Santiago B, Gilissen C, Vissers LE, de Vries P, et al. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nature Genet. 2011;43:729–31.CrossRefPubMed Hoischen A, van Bon BW, Rodriguez-Santiago B, Gilissen C, Vissers LE, de Vries P, et al. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nature Genet. 2011;43:729–31.CrossRefPubMed
11.
go back to reference Magini P, Della Monica M, Uzielli ML, Mongelli P, Scarselli G, Gambineri E, et al. Two novel patients with Bohring-Opitz syndrome caused by de novo ASXL1 mutations. Am J Med Genet. 2012;158:917–21.CrossRef Magini P, Della Monica M, Uzielli ML, Mongelli P, Scarselli G, Gambineri E, et al. Two novel patients with Bohring-Opitz syndrome caused by de novo ASXL1 mutations. Am J Med Genet. 2012;158:917–21.CrossRef
12.
go back to reference Thol F, Friesen I, Damm F, Yun H, Weissinger EM, Krauter J, et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol. 2011;29:2499–506.CrossRefPubMed Thol F, Friesen I, Damm F, Yun H, Weissinger EM, Krauter J, et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol. 2011;29:2499–506.CrossRefPubMed
13.
go back to reference Pratcorona M, Abbas S, Sanders M, Koenders JE, Kavelaars FG, Erpelinck-Verschueren CA, et al. Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Hematologica. 2012;97:388–92.CrossRef Pratcorona M, Abbas S, Sanders M, Koenders JE, Kavelaars FG, Erpelinck-Verschueren CA, et al. Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Hematologica. 2012;97:388–92.CrossRef
14.
go back to reference Gelsi-Boyer V, Brecqueville M, Devillier R, Murati A, Mozziconacci MJ, Birnbaum D. Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol. 2012;5:12–7.CrossRefPubMedPubMedCentral Gelsi-Boyer V, Brecqueville M, Devillier R, Murati A, Mozziconacci MJ, Birnbaum D. Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol. 2012;5:12–7.CrossRefPubMedPubMedCentral
15.
go back to reference Patnaik MM, Itzykson R, Lasho TL, Kosmider O, Finke CM, Hanson CA, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014;28:2206–12.CrossRefPubMed Patnaik MM, Itzykson R, Lasho TL, Kosmider O, Finke CM, Hanson CA, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014;28:2206–12.CrossRefPubMed
16.
go back to reference Abdel-Wahab O, Pardanani A, Patel J, Wadleigh M, Lasho T, Heguy A, et al. Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia. 2011;25:1200–2.CrossRefPubMedPubMedCentral Abdel-Wahab O, Pardanani A, Patel J, Wadleigh M, Lasho T, Heguy A, et al. Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia. 2011;25:1200–2.CrossRefPubMedPubMedCentral
17.
go back to reference Quesada V, Conde L, Villamor N, Ordóñez GR, Jares P, Bassaganyas L, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nature Genet. 2011;44:47–52.CrossRefPubMed Quesada V, Conde L, Villamor N, Ordóñez GR, Jares P, Bassaganyas L, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nature Genet. 2011;44:47–52.CrossRefPubMed
18.
go back to reference Tavtigian SV, Deffenbaugh AM, Yin L, Judkins T, Scholl T, Samollow PB, de Silva D, Thomas A, et al. Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet. 2006;43:295–305.CrossRefPubMedPubMedCentral Tavtigian SV, Deffenbaugh AM, Yin L, Judkins T, Scholl T, Samollow PB, de Silva D, Thomas A, et al. Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet. 2006;43:295–305.CrossRefPubMedPubMedCentral
19.
go back to reference Tong W, Li L, Weng Z. Computational prediction of binding hotspots Conf Proc IEEE. Eng Med Biol Soc. 2004;4:2980–3. Tong W, Li L, Weng Z. Computational prediction of binding hotspots Conf Proc IEEE. Eng Med Biol Soc. 2004;4:2980–3.
20.
go back to reference Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.CrossRefPubMedPubMedCentral Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.CrossRefPubMedPubMedCentral
21.
go back to reference Stecher G, Liu L, Sanderford M, Peterson D, Tamura K, Kumar S. MEGA-MD: Molecular Evolutionary Genetics Analysis software with mutational diagnosis of amino acid variation. Bioinformatics. 2014;30:1305–7.CrossRefPubMedPubMedCentral Stecher G, Liu L, Sanderford M, Peterson D, Tamura K, Kumar S. MEGA-MD: Molecular Evolutionary Genetics Analysis software with mutational diagnosis of amino acid variation. Bioinformatics. 2014;30:1305–7.CrossRefPubMedPubMedCentral
22.
go back to reference Houlston RS, Catovsky D, Yuille MR. Genetic susceptibility to chronic lymphocytic leukemia. Leukemia. 2002;16:1008–14.CrossRefPubMed Houlston RS, Catovsky D, Yuille MR. Genetic susceptibility to chronic lymphocytic leukemia. Leukemia. 2002;16:1008–14.CrossRefPubMed
23.
go back to reference El Abed R, Bourdon V, Voskoboinik I, Omri H, Youssef YB, Laatiri MA, et al. Molecular study of the perforin gene in familial hematological malignancies. HCCP J. 2011;9:9–16. El Abed R, Bourdon V, Voskoboinik I, Omri H, Youssef YB, Laatiri MA, et al. Molecular study of the perforin gene in familial hematological malignancies. HCCP J. 2011;9:9–16.
24.
go back to reference El Abed R, Bourdon V, Huiart L, Eisinger F, Khelif A, Frenay M, et al. Molecular study of CEPBA in familial hematological malignancies. Fam Cancer. 2009;8:581–4.CrossRefPubMed El Abed R, Bourdon V, Huiart L, Eisinger F, Khelif A, Frenay M, et al. Molecular study of CEPBA in familial hematological malignancies. Fam Cancer. 2009;8:581–4.CrossRefPubMed
25.
go back to reference Su L, Li X, Gao SJ, Yu P, Liu XL, Tan YH, et al. Cytogenetic and genetic mutation features of de novo acute myeloid leukemia in elderly chinese patients. Asian Pac J Cancer Prev. 2014;15:895–8.CrossRefPubMed Su L, Li X, Gao SJ, Yu P, Liu XL, Tan YH, et al. Cytogenetic and genetic mutation features of de novo acute myeloid leukemia in elderly chinese patients. Asian Pac J Cancer Prev. 2014;15:895–8.CrossRefPubMed
27.
go back to reference An Q, Wright SL, Moorman AV, Parker H, Griffiths M, Ross FM, et al. Heterogeneous breakpoints in patients with acute lymphoblastic leukemia and the dic(9;20)(p11-13;q11) show recurrent involvement of genes at 20q11.21. Hematologica. 2009;94:1164–9.CrossRef An Q, Wright SL, Moorman AV, Parker H, Griffiths M, Ross FM, et al. Heterogeneous breakpoints in patients with acute lymphoblastic leukemia and the dic(9;20)(p11-13;q11) show recurrent involvement of genes at 20q11.21. Hematologica. 2009;94:1164–9.CrossRef
28.
go back to reference Ramanathan A, Mahmoud HAR, Hui LP, Mei NY, Valliappan V, Zain RB. Oral extranodal non Hodgkin’s lymphoma: series of forty two cases in Malaysia. Asian Pac J Cancer Prev. 2014;15:1633–7.CrossRefPubMed Ramanathan A, Mahmoud HAR, Hui LP, Mei NY, Valliappan V, Zain RB. Oral extranodal non Hodgkin’s lymphoma: series of forty two cases in Malaysia. Asian Pac J Cancer Prev. 2014;15:1633–7.CrossRefPubMed
29.
go back to reference Cho YS, Kim EJ, Park UH, Sin HS, Um SJ. Additional sex comb-like1(ASXL1) in cooperation with SRC-1, acts as a ligand-dependent coactivator for retinoic acid receptor. J Biol Chem. 2006;281:17588–98.CrossRefPubMed Cho YS, Kim EJ, Park UH, Sin HS, Um SJ. Additional sex comb-like1(ASXL1) in cooperation with SRC-1, acts as a ligand-dependent coactivator for retinoic acid receptor. J Biol Chem. 2006;281:17588–98.CrossRefPubMed
30.
go back to reference Tang M, Hou YL, Kang QQ, Chen XY, Duan LQ, Shu J, et al. All-trans-retinoic acid promotes iodine uptake via upregulating the sodium iodide symporter in medullary thyroid cancer stem cells. Asian Pac J Cancer Prev. 2014;15:1859–62.CrossRefPubMed Tang M, Hou YL, Kang QQ, Chen XY, Duan LQ, Shu J, et al. All-trans-retinoic acid promotes iodine uptake via upregulating the sodium iodide symporter in medullary thyroid cancer stem cells. Asian Pac J Cancer Prev. 2014;15:1859–62.CrossRefPubMed
Metadata
Title
Familial hematological malignancies: ASXL1 gene investigation
Authors
W. S. Hamadou
R. E. Abed
S. Besbes
V. Bourdon
A. Fabre
Y. B. Youssef
M. A. Laatiri
F. Eisinger
V. Mari
P. Gesta
H. Dreyfus
V. Bonadona
C. Dugast
H. Zattara
L. Faivre
S. Y. Jemni
T. Noguchi
A. Khélif
H. Sobol
Z. Soua
Publication date
01-04-2016
Publisher
Springer Milan
Published in
Clinical and Translational Oncology / Issue 4/2016
Print ISSN: 1699-048X
Electronic ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-015-1379-7

Other articles of this Issue 4/2016

Clinical and Translational Oncology 4/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine