Skip to main content
Top
Published in: Neurocritical Care 2/2016

01-04-2016 | Translational Research

Cerebral and Peripheral Metabolism to Predict Successful Reperfusion After Cardiac Arrest in Rats: A Microdialysis Study

Authors: A. Hosmann, A. Schober, A. Gruber, F. Sterz, C. Testori, A. Warenits, W. Weihs, S. Högler, T. Scherer, A. Janata, A. Laggner, Markus Zeitlinger

Published in: Neurocritical Care | Issue 2/2016

Login to get access

Abstract

Background

In clinical practice, monitoring of the efficacy of resuscitation can be challenging. The prediction of cerebral and overall outcome in particular is an unmet medical need. Microdialysis is a minimally invasive technique for the continuous determination of metabolic parameters in vivo. Using this technique, we set out to establish a model allowing for concomitant determination of cerebral and peripheral metabolism in a cardiac arrest setting in rodents.

Methods

Microdialysis settings were optimized in vitro and then used in male Sprague–Dawley rats. Probes were implanted into the CA1 region of the right hippocampus and the right femoral vein. With a time interval of 8 min, glucose, lactate, pyruvate, and glutamate levels were determined during baseline conditions, untreated ventricular fibrillation cardiac arrest, cardiopulmonary resuscitation (CPR), reperfusion, and death.

Results

In 16 rodents, restoration of spontaneous circulation was achieved in seven animals. Characteristic metabolic changes were evident during cardiac arrest and reperfusion with both probes. Ischemic patterns in peripheral compartments were delayed and more variable compared to the changes in cerebral metabolism highlighting the importance of cerebral metabolic monitoring. Microdialysis allowed distinguishing between survivors and non-survivors 8 min after termination of CPR. Cerebral glutamate showed a trend toward higher levels in non-survivors during CPR.

Conclusions

We established a new rodent model for research in hypoxic ischemic encephalopathy. This setting allows to investigate the impact of resuscitation methods on cerebral and peripheral metabolism simultaneously. The present model may be used to evaluate different resuscitation strategies in order to optimize brain survival in future studies.
Literature
1.
go back to reference Sarrafzadeh AS, Sakowitz OW, Kiening KL, Benndorf G, Lanksch WR, Unterberg AW. Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med. 2002;30:1062–70.CrossRefPubMed Sarrafzadeh AS, Sakowitz OW, Kiening KL, Benndorf G, Lanksch WR, Unterberg AW. Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med. 2002;30:1062–70.CrossRefPubMed
2.
go back to reference Bellander B-M, Cantais E, Enblad P, et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;30:2166–9.CrossRefPubMed Bellander B-M, Cantais E, Enblad P, et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;30:2166–9.CrossRefPubMed
3.
go back to reference Schulz MK, Wang LP, Tange M, Bjerre P. Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2000;93:808–14.CrossRefPubMed Schulz MK, Wang LP, Tange M, Bjerre P. Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2000;93:808–14.CrossRefPubMed
4.
go back to reference Runge M, Hughes P, Peter Gøtze J, Petersen RH, Steinbrüchel DA. Evaluation of myocardial metabolism with microdialysis after protection with cold blood- or cold crystalloid cardioplegia. A porcine model. Scand Cardiovasc J. 2006;40:186–93.CrossRefPubMed Runge M, Hughes P, Peter Gøtze J, Petersen RH, Steinbrüchel DA. Evaluation of myocardial metabolism with microdialysis after protection with cold blood- or cold crystalloid cardioplegia. A porcine model. Scand Cardiovasc J. 2006;40:186–93.CrossRefPubMed
5.
go back to reference Zoremba N, Homola A, Rossaint R, Syková E. Interstitial lactate, lactate/pyruvate and glucose in rat muscle before, during and in the recovery from global hypoxia. Acta Vet Scand. 2014;56:72.CrossRefPubMedPubMedCentral Zoremba N, Homola A, Rossaint R, Syková E. Interstitial lactate, lactate/pyruvate and glucose in rat muscle before, during and in the recovery from global hypoxia. Acta Vet Scand. 2014;56:72.CrossRefPubMedPubMedCentral
6.
go back to reference Silva MA, Richards DA, Bramhall SR, Adams DH, Mirza DF, Murphy N. A study of the metabolites of ischemia-reperfusion injury and selected amino acids in the liver using microdialysis during transplantation. Transplantation. 2005;79:828–35.CrossRefPubMed Silva MA, Richards DA, Bramhall SR, Adams DH, Mirza DF, Murphy N. A study of the metabolites of ischemia-reperfusion injury and selected amino acids in the liver using microdialysis during transplantation. Transplantation. 2005;79:828–35.CrossRefPubMed
7.
go back to reference Weld KJ, Montiglio C, Bush AC, Harroff HH, Cespedes RD. Real-time analysis of renal interstitial metabolites during induced renal ischemia*. J Endourol. 2008;22:571–4.CrossRefPubMed Weld KJ, Montiglio C, Bush AC, Harroff HH, Cespedes RD. Real-time analysis of renal interstitial metabolites during induced renal ischemia*. J Endourol. 2008;22:571–4.CrossRefPubMed
8.
go back to reference Takata K, Takeda Y, Sato T, Nakatsuka H, Yokoyama M, Morita K. Effects of hypothermia for a short period on histologic outcome and extracellular glutamate concentration during and after cardiac arrest in rats. Crit Care Med. 2005;33:1340–5.CrossRefPubMed Takata K, Takeda Y, Sato T, Nakatsuka H, Yokoyama M, Morita K. Effects of hypothermia for a short period on histologic outcome and extracellular glutamate concentration during and after cardiac arrest in rats. Crit Care Med. 2005;33:1340–5.CrossRefPubMed
9.
go back to reference Nordmark J, Enblad P, Rubertsson S. Cerebral energy failure following experimental cardiac arrest hypothermia treatment reduces secondary lactate/pyruvate-ratio increase. Resuscitation. 2009;80:573–9.CrossRefPubMed Nordmark J, Enblad P, Rubertsson S. Cerebral energy failure following experimental cardiac arrest hypothermia treatment reduces secondary lactate/pyruvate-ratio increase. Resuscitation. 2009;80:573–9.CrossRefPubMed
10.
go back to reference Valen G, Owall A, Takeshima S, Goiny M, Ungerstedt U, Vaage J. Metabolic changes induced by ischemia and cardioplegia: a study employing cardiac microdialysis in pigs. Eur J Cardiothorac Surg. 2004;25:69–75.CrossRefPubMed Valen G, Owall A, Takeshima S, Goiny M, Ungerstedt U, Vaage J. Metabolic changes induced by ischemia and cardioplegia: a study employing cardiac microdialysis in pigs. Eur J Cardiothorac Surg. 2004;25:69–75.CrossRefPubMed
11.
go back to reference Schierenbeck F, Nijsten MW, Franco-Cereceda A, Liska J. Introducing intravascular microdialysis for continuous lactate monitoring in patients undergoing cardiac surgery: a prospective observational study. Crit Care. 2014;18:R56.CrossRefPubMedPubMedCentral Schierenbeck F, Nijsten MW, Franco-Cereceda A, Liska J. Introducing intravascular microdialysis for continuous lactate monitoring in patients undergoing cardiac surgery: a prospective observational study. Crit Care. 2014;18:R56.CrossRefPubMedPubMedCentral
12.
go back to reference Janata A, Drabek T, Magnet IA, et al. Extracorporeal versus conventional cardiopulmonary resuscitation after ventricular fibrillation cardiac arrest in rats: a feasibility trial. Crit Care Med. 2013;41:e211–22.CrossRefPubMed Janata A, Drabek T, Magnet IA, et al. Extracorporeal versus conventional cardiopulmonary resuscitation after ventricular fibrillation cardiac arrest in rats: a feasibility trial. Crit Care Med. 2013;41:e211–22.CrossRefPubMed
13.
go back to reference Hutchinson PJ, O’Connell MT, Al-Rawi PG, et al. Clinical cerebral microdialysis: a methodological study. J Neurosurg. 2000;93:37–43.CrossRefPubMed Hutchinson PJ, O’Connell MT, Al-Rawi PG, et al. Clinical cerebral microdialysis: a methodological study. J Neurosurg. 2000;93:37–43.CrossRefPubMed
14.
go back to reference Colbourne F, Li H, Buchan AM. Indefatigable CA1 sector neuroprotection with mild hypothermia induced 6 hours after severe forebrain ischemia in rats. J Cereb Blood Flow Metab. 1999;19:742–9.CrossRefPubMed Colbourne F, Li H, Buchan AM. Indefatigable CA1 sector neuroprotection with mild hypothermia induced 6 hours after severe forebrain ischemia in rats. J Cereb Blood Flow Metab. 1999;19:742–9.CrossRefPubMed
15.
go back to reference Frykholm P, Hillered L, Långström B, Persson L, Valtysson J, Enblad P. Relationship between cerebral blood flow and oxygen metabolism, and extracellular glucose and lactate concentrations during middle cerebral artery occlusion and reperfusion: a microdialysis and positron emission tomography study in nonhuman primates. J Neurosurg. 2005;102:1076–84.CrossRefPubMed Frykholm P, Hillered L, Långström B, Persson L, Valtysson J, Enblad P. Relationship between cerebral blood flow and oxygen metabolism, and extracellular glucose and lactate concentrations during middle cerebral artery occlusion and reperfusion: a microdialysis and positron emission tomography study in nonhuman primates. J Neurosurg. 2005;102:1076–84.CrossRefPubMed
16.
go back to reference Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25:763–74.CrossRefPubMedPubMedCentral Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25:763–74.CrossRefPubMedPubMedCentral
17.
go back to reference Sala N, Suys T, Zerlauth JB, et al. Cerebral extracellular lactate increase is predominantly nonischemic in patients with severe traumatic brain injury. J Cereb Blood Flow Metab. 2013;33:1815–22.CrossRefPubMedPubMedCentral Sala N, Suys T, Zerlauth JB, et al. Cerebral extracellular lactate increase is predominantly nonischemic in patients with severe traumatic brain injury. J Cereb Blood Flow Metab. 2013;33:1815–22.CrossRefPubMedPubMedCentral
18.
go back to reference Lin B, Busto R, Globus MY, Martinez E, Ginsberg MD. Brain temperature modulations during global ischemia fail to influence extracellular lactate levels in rats. Stroke. 1995;26:1634–8.CrossRefPubMed Lin B, Busto R, Globus MY, Martinez E, Ginsberg MD. Brain temperature modulations during global ischemia fail to influence extracellular lactate levels in rats. Stroke. 1995;26:1634–8.CrossRefPubMed
19.
go back to reference Pellerin L, Bouzier-Sore AK, Aubert A, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia. 2007;55:1251–62.CrossRefPubMed Pellerin L, Bouzier-Sore AK, Aubert A, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia. 2007;55:1251–62.CrossRefPubMed
20.
go back to reference Pellerin L, Pellegri G, Bittar PG, et al. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci. 1998;20:291–9.CrossRefPubMed Pellerin L, Pellegri G, Bittar PG, et al. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci. 1998;20:291–9.CrossRefPubMed
21.
go back to reference Schurr A, Payne RS, Miller JJ, Rigor BM. Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res. 1997;744:105–11.CrossRefPubMed Schurr A, Payne RS, Miller JJ, Rigor BM. Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res. 1997;744:105–11.CrossRefPubMed
22.
go back to reference Phillis JW, Ren J, O’Regan MH. Studies on the effects of lactate transport inhibition, pyruvate, glucose and glutamine on amino acid, lactate and glucose release from the ischemic rat cerebral cortex. J Neurochem. 2001;76:247–57.CrossRefPubMed Phillis JW, Ren J, O’Regan MH. Studies on the effects of lactate transport inhibition, pyruvate, glucose and glutamine on amino acid, lactate and glucose release from the ischemic rat cerebral cortex. J Neurochem. 2001;76:247–57.CrossRefPubMed
23.
go back to reference Nordmark J, Rubertsson S, Mörtberg E, Nilsson P, Enblad P. Intracerebral monitoring in comatose patients treated with hypothermia after a cardiac arrest. Acta Anaesthesiol Scand. 2009;53:289–98.CrossRefPubMed Nordmark J, Rubertsson S, Mörtberg E, Nilsson P, Enblad P. Intracerebral monitoring in comatose patients treated with hypothermia after a cardiac arrest. Acta Anaesthesiol Scand. 2009;53:289–98.CrossRefPubMed
24.
go back to reference Nielsen TH, Olsen NV, Toft P, Nordström CH. Cerebral energy metabolism during mitochondrial dysfunction induced by cyanide in piglets. Acta Anaesthesiol Scand. 2013;57:793–801.CrossRefPubMed Nielsen TH, Olsen NV, Toft P, Nordström CH. Cerebral energy metabolism during mitochondrial dysfunction induced by cyanide in piglets. Acta Anaesthesiol Scand. 2013;57:793–801.CrossRefPubMed
25.
go back to reference Sarrafzadeh AS, Haux D, Lüdemann L, et al. Cerebral ischemia in aneurysmal subarachnoid hemorrhage: a correlative microdialysis-PET study. Stroke. 2004;35:638–43.CrossRefPubMed Sarrafzadeh AS, Haux D, Lüdemann L, et al. Cerebral ischemia in aneurysmal subarachnoid hemorrhage: a correlative microdialysis-PET study. Stroke. 2004;35:638–43.CrossRefPubMed
26.
go back to reference Choi DW. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett. 1985;58:293–7.CrossRefPubMed Choi DW. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett. 1985;58:293–7.CrossRefPubMed
27.
go back to reference Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J Neurosci. 1987;7:357–68.PubMed Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J Neurosci. 1987;7:357–68.PubMed
28.
go back to reference Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Ann Neurol. 1986;19:105–11.CrossRefPubMed Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Ann Neurol. 1986;19:105–11.CrossRefPubMed
29.
go back to reference Swanson RA, Chen J, Graham SH. Glucose can fuel glutamate uptake in ischemic brain. J Cereb Blood Flow Metab. 1994;14:1–6.CrossRefPubMed Swanson RA, Chen J, Graham SH. Glucose can fuel glutamate uptake in ischemic brain. J Cereb Blood Flow Metab. 1994;14:1–6.CrossRefPubMed
30.
go back to reference Samuelsson C, Hillered L, Zetterling M, et al. Cerebral glutamine and glutamate levels in relation to compromised energy metabolism: a microdialysis study in subarachnoid hemorrhage patients. J Cereb Blood Flow Metab. 2007;27:1309–17.CrossRefPubMed Samuelsson C, Hillered L, Zetterling M, et al. Cerebral glutamine and glutamate levels in relation to compromised energy metabolism: a microdialysis study in subarachnoid hemorrhage patients. J Cereb Blood Flow Metab. 2007;27:1309–17.CrossRefPubMed
31.
go back to reference de Lange EC, Danhof M, de Boer AG, Breimer DD. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood-brain barrier. Brain Res Brain Res Rev. 1997;25:27–49.CrossRefPubMed de Lange EC, Danhof M, de Boer AG, Breimer DD. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood-brain barrier. Brain Res Brain Res Rev. 1997;25:27–49.CrossRefPubMed
32.
go back to reference Schierenbeck F, Wallin M, Franco-Cereceda A, Liska J. Evaluation of intravascular microdialysis for continuous blood glucose monitoring in hypoglycemia: an animal model. J Diabetes Sci Technol. 2014;8:839–44.CrossRefPubMedPubMedCentral Schierenbeck F, Wallin M, Franco-Cereceda A, Liska J. Evaluation of intravascular microdialysis for continuous blood glucose monitoring in hypoglycemia: an animal model. J Diabetes Sci Technol. 2014;8:839–44.CrossRefPubMedPubMedCentral
33.
go back to reference Möller F, Liska J, Eidhagen F, Franco-Cereceda A. Intravascular microdialysis as a method for measuring glucose and lactate during and after cardiac surgery. J Diabetes Sci Technol. 2011;5:1099–107.CrossRefPubMedPubMedCentral Möller F, Liska J, Eidhagen F, Franco-Cereceda A. Intravascular microdialysis as a method for measuring glucose and lactate during and after cardiac surgery. J Diabetes Sci Technol. 2011;5:1099–107.CrossRefPubMedPubMedCentral
34.
go back to reference Mapstone J, Roberts I, Evans P. Fluid resuscitation strategies: a systematic review of animal trials. J Trauma. 2003;55:571–89.CrossRefPubMed Mapstone J, Roberts I, Evans P. Fluid resuscitation strategies: a systematic review of animal trials. J Trauma. 2003;55:571–89.CrossRefPubMed
35.
go back to reference Ragoonanan TE, Beattie WS, Mazer CD, et al. Metoprolol reduces cerebral tissue oxygen tension after acute hemodilution in rats. Anesthesiology. 2009;111:988–1000.CrossRefPubMed Ragoonanan TE, Beattie WS, Mazer CD, et al. Metoprolol reduces cerebral tissue oxygen tension after acute hemodilution in rats. Anesthesiology. 2009;111:988–1000.CrossRefPubMed
36.
go back to reference Bauer R, Gabl M, Obwegeser A, Galiano K, Barbach J, Mohsenipour I. Neurochemical monitoring using intracerebral microdialysis during cardiac resuscitation. Intensive Care Med. 2004;30:159–61.CrossRefPubMed Bauer R, Gabl M, Obwegeser A, Galiano K, Barbach J, Mohsenipour I. Neurochemical monitoring using intracerebral microdialysis during cardiac resuscitation. Intensive Care Med. 2004;30:159–61.CrossRefPubMed
37.
go back to reference Nilsson OG, Brandt L, Ungerstedt U, Säveland H. Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery. 1999;45:1176–84.CrossRefPubMed Nilsson OG, Brandt L, Ungerstedt U, Säveland H. Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery. 1999;45:1176–84.CrossRefPubMed
38.
go back to reference Skjøth-Rasmussen J, Schulz M, Kristensen SR, Bjerre P. Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;100:8–15.CrossRefPubMed Skjøth-Rasmussen J, Schulz M, Kristensen SR, Bjerre P. Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;100:8–15.CrossRefPubMed
39.
go back to reference Sarrafzadeh AS, Sakowitz OW, Callsen TA, Lanksch WR, Unterberg AW. Detection of secondary insults by brain tissue pO2 and bedside microdialysis in severe head injury. Acta Neurochir Suppl. 2002;81:319–21.PubMed Sarrafzadeh AS, Sakowitz OW, Callsen TA, Lanksch WR, Unterberg AW. Detection of secondary insults by brain tissue pO2 and bedside microdialysis in severe head injury. Acta Neurochir Suppl. 2002;81:319–21.PubMed
40.
go back to reference Unterberg AW, Sakowitz OW, Sarrafzadeh AS, Benndorf G, Lanksch WR. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2001;94:740–9.CrossRefPubMed Unterberg AW, Sakowitz OW, Sarrafzadeh AS, Benndorf G, Lanksch WR. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2001;94:740–9.CrossRefPubMed
41.
go back to reference Sarrafzadeh A, Haux D, Küchler I, Lanksch WR, Unterberg AW. Poor-grade aneurysmal subarachnoid hemorrhage: relationship of cerebral metabolism to outcome. J Neurosurg. 2004;100:400–6.CrossRefPubMed Sarrafzadeh A, Haux D, Küchler I, Lanksch WR, Unterberg AW. Poor-grade aneurysmal subarachnoid hemorrhage: relationship of cerebral metabolism to outcome. J Neurosurg. 2004;100:400–6.CrossRefPubMed
42.
go back to reference Goyagi T, Nishikawa T, Tobe Y. Neuroprotective effects and suppression of ischemia-induced glutamate elevation by β1-adrenoreceptor antagonists administered before transient focal ischemia in rats. J Neurosurg Anesthesiol. 2011;23:131–7.CrossRefPubMed Goyagi T, Nishikawa T, Tobe Y. Neuroprotective effects and suppression of ischemia-induced glutamate elevation by β1-adrenoreceptor antagonists administered before transient focal ischemia in rats. J Neurosurg Anesthesiol. 2011;23:131–7.CrossRefPubMed
43.
go back to reference Rimpiläinen J, Pokela M, Kiviluoma K, et al. The N-methyl-D-aspartate antagonist memantine has no neuroprotective effect during hypothermic circulatory arrest: a study in the chronic porcine model. J Thorac Cardiovasc Surg. 2001;121:957–68.CrossRefPubMed Rimpiläinen J, Pokela M, Kiviluoma K, et al. The N-methyl-D-aspartate antagonist memantine has no neuroprotective effect during hypothermic circulatory arrest: a study in the chronic porcine model. J Thorac Cardiovasc Surg. 2001;121:957–68.CrossRefPubMed
44.
go back to reference Chen HI, Stiefel MF, Oddo M, et al. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery. 2011;69:53–63.CrossRefPubMed Chen HI, Stiefel MF, Oddo M, et al. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery. 2011;69:53–63.CrossRefPubMed
45.
go back to reference Vespa PM, McArthur D, O’Phelan K, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23:865–77.CrossRefPubMed Vespa PM, McArthur D, O’Phelan K, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23:865–77.CrossRefPubMed
46.
47.
go back to reference Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med. 2009;37:S186–202.CrossRefPubMed Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med. 2009;37:S186–202.CrossRefPubMed
48.
go back to reference Schubert GA, Poli S, Mendelowitsch A, Schilling L, Thomé C. Hypothermia reduces early hypoperfusion and metabolic alterations during the acute phase of massive subarachnoid hemorrhage: a laser-Doppler-flowmetry and microdialysis study in rats. J Neurotrauma. 2008;25:539–48.CrossRefPubMed Schubert GA, Poli S, Mendelowitsch A, Schilling L, Thomé C. Hypothermia reduces early hypoperfusion and metabolic alterations during the acute phase of massive subarachnoid hemorrhage: a laser-Doppler-flowmetry and microdialysis study in rats. J Neurotrauma. 2008;25:539–48.CrossRefPubMed
49.
go back to reference Ehrlich MP, McCullough JN, Zhang N, et al. Effect of hypothermia on cerebral blood flow and metabolism in the pig. Ann Thorac Surg. 2002;73:191–7.CrossRefPubMed Ehrlich MP, McCullough JN, Zhang N, et al. Effect of hypothermia on cerebral blood flow and metabolism in the pig. Ann Thorac Surg. 2002;73:191–7.CrossRefPubMed
Metadata
Title
Cerebral and Peripheral Metabolism to Predict Successful Reperfusion After Cardiac Arrest in Rats: A Microdialysis Study
Authors
A. Hosmann
A. Schober
A. Gruber
F. Sterz
C. Testori
A. Warenits
W. Weihs
S. Högler
T. Scherer
A. Janata
A. Laggner
Markus Zeitlinger
Publication date
01-04-2016
Publisher
Springer US
Published in
Neurocritical Care / Issue 2/2016
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-015-0214-x

Other articles of this Issue 2/2016

Neurocritical Care 2/2016 Go to the issue