Skip to main content
Top
Published in: Neurocritical Care 2/2014

01-04-2014 | Original Article

Therapeutic Hypothermia Reduces Middle Cerebral Artery Flow Velocity in Patients with Severe Aneurysmal Subarachnoid Hemorrhage

Authors: M. Seule, C. Muroi, C. Sikorski, M. Hugelshofer, K. Winkler, E. Keller

Published in: Neurocritical Care | Issue 2/2014

Login to get access

Abstract

Background

Transcranial Doppler (TCD) is widely used to detect and follow up cerebral vasospasm after subarachnoid hemorrhage (SAH). Therapeutic hypothermia might influence blood flow velocities assessed by TCD. The aim of the study was to evaluate the effect of hypothermia on Doppler blood flow velocity after SAH.

Methods

In 20 patients treated with hypothermia (33°) due to refractory intracranial hypertension or delayed cerebral ischemia (DCI), mean flow velocity of the middle cerebral artery (MFVMCA) was assessed by TCD. Thirteen patients were treated with combined hypothermia and barbiturate coma and seven with hypothermia alone. MFVMCA was obtained within 24 h before and after induction of hypothermia as well as before and after rewarming.

Results

Hypothermia was induced on average 5 days after SAH (range 1–12) and maintained for 144 h (range 29–270). After hypothermia induction, MFVMCA decreased from 113.7 ± 49.0 to 93.8 ± 44.7 cm/s (p = 0.001). The decrease was independent of SAH-related complications and barbiturate coma. MFVMCA further decreased by 28.2 cm/s between early and late hypothermia (p < 0.001). This second decrease was observed in patients with DCI (p < 0.001), but not in patients with intracranial hypertension (p = 0.715). Compared to late hypothermia, MFVMCA remained unchanged after rewarming (65.6 ± 32.1 vs 70.3 ± 36.8 cm/s; p = 0.219). However, patients treated with hypothermia alone showed an increase in MFVMCA after rewarming (p = 0.016).

Conclusion

Therapeutic hypothermia after SAH decreases Doppler blood flow velocity in both intracranial hypertension and DCI cases. The results can be the effect of hypothermia-related mechanisms or resolving cerebral vasospasm during prolonged hypothermia.
Literature
1.
go back to reference Heuer GG, Smith MJ, Elliott JP, Winn HR, LeRoux PD. Relationship between intracranial pressure and other clinical variables in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;101:408–16.PubMedCrossRef Heuer GG, Smith MJ, Elliott JP, Winn HR, LeRoux PD. Relationship between intracranial pressure and other clinical variables in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;101:408–16.PubMedCrossRef
2.
go back to reference Vergouwen MD, Ilodigwe D, Macdonald RL. Cerebral infarction after subarachnoid hemorrhage contributes to poor outcome by vasospasm-dependent and -independent effects. Stroke. 2011;42:924–9.PubMedCrossRef Vergouwen MD, Ilodigwe D, Macdonald RL. Cerebral infarction after subarachnoid hemorrhage contributes to poor outcome by vasospasm-dependent and -independent effects. Stroke. 2011;42:924–9.PubMedCrossRef
3.
go back to reference Thome C, Schubert G, Piepgras A, Elste V, Schilling L, Schmiedek P. Hypothermia reduces acute vasospasm following SAH in rats. Acta Neurochir Suppl. 2001;77:255–8.PubMed Thome C, Schubert G, Piepgras A, Elste V, Schilling L, Schmiedek P. Hypothermia reduces acute vasospasm following SAH in rats. Acta Neurochir Suppl. 2001;77:255–8.PubMed
4.
go back to reference Schubert GA, Poli S, Mendelowitsch A, Schilling L, Thome C. Hypothermia reduces early hypoperfusion and metabolic alterations during the acute phase of massive subarachnoid hemorrhage: a laser-Doppler-flowmetry and microdialysis study in rats. J Neurotrauma. 2008;25:539–48.PubMedCrossRef Schubert GA, Poli S, Mendelowitsch A, Schilling L, Thome C. Hypothermia reduces early hypoperfusion and metabolic alterations during the acute phase of massive subarachnoid hemorrhage: a laser-Doppler-flowmetry and microdialysis study in rats. J Neurotrauma. 2008;25:539–48.PubMedCrossRef
5.
go back to reference Schubert GA, Poli S, Schilling L, Heiland S, Thome C. Hypothermia reduces cytotoxic edema and metabolic alterations during the acute phase of massive SAH: a diffusion-weighted imaging and spectroscopy study in rats. J Neurotrauma. 2008;25:841–52.PubMedCrossRef Schubert GA, Poli S, Schilling L, Heiland S, Thome C. Hypothermia reduces cytotoxic edema and metabolic alterations during the acute phase of massive SAH: a diffusion-weighted imaging and spectroscopy study in rats. J Neurotrauma. 2008;25:841–52.PubMedCrossRef
6.
go back to reference Piepgras A, Elste V, Frietsch T, Schmiedek P, Reith W, Schilling L. Effect of moderate hypothermia on experimental severe subarachnoid hemorrhage, as evaluated by apparent diffusion coefficient changes. Neurosurgery. 2001;48:1128–34 discussion 34–5.PubMedCrossRef Piepgras A, Elste V, Frietsch T, Schmiedek P, Reith W, Schilling L. Effect of moderate hypothermia on experimental severe subarachnoid hemorrhage, as evaluated by apparent diffusion coefficient changes. Neurosurgery. 2001;48:1128–34 discussion 34–5.PubMedCrossRef
7.
go back to reference Wang ZP, Chen HS, Wang FX. Influence of plasma and cerebrospinal fluid levels of endothelin-1 and no in reducing cerebral vasospasm after subarachnoid hemorrhage during treatment with mild hypothermia, in a dog model. Cell Biochem Biophys. 2011;61:137–43.PubMedCrossRef Wang ZP, Chen HS, Wang FX. Influence of plasma and cerebrospinal fluid levels of endothelin-1 and no in reducing cerebral vasospasm after subarachnoid hemorrhage during treatment with mild hypothermia, in a dog model. Cell Biochem Biophys. 2011;61:137–43.PubMedCrossRef
8.
go back to reference Todd MM, Hindman BJ, Clarke WR, Torner JC. Mild intraoperative hypothermia during surgery for intracranial aneurysm. N Engl J Med. 2005;352:135–45.PubMedCrossRef Todd MM, Hindman BJ, Clarke WR, Torner JC. Mild intraoperative hypothermia during surgery for intracranial aneurysm. N Engl J Med. 2005;352:135–45.PubMedCrossRef
9.
go back to reference Gasser S, Khan N, Yonekawa Y, Imhof HG, Keller E. Long-term hypothermia in patients with severe brain edema after poor-grade subarachnoid hemorrhage: feasibility and intensive care complications. J Neurosurg Anesthesiol. 2003;15:240–8.PubMedCrossRef Gasser S, Khan N, Yonekawa Y, Imhof HG, Keller E. Long-term hypothermia in patients with severe brain edema after poor-grade subarachnoid hemorrhage: feasibility and intensive care complications. J Neurosurg Anesthesiol. 2003;15:240–8.PubMedCrossRef
10.
go back to reference Seule MA, Muroi C, Mink S, Yonekawa Y, Keller E. Therapeutic hypothermia in patients with aneurysmal subarachnoid hemorrhage, refractory intracranial hypertension, or cerebral vasospasm. Neurosurgery. 2009;64:86–92 discussion 3.PubMedCrossRef Seule MA, Muroi C, Mink S, Yonekawa Y, Keller E. Therapeutic hypothermia in patients with aneurysmal subarachnoid hemorrhage, refractory intracranial hypertension, or cerebral vasospasm. Neurosurgery. 2009;64:86–92 discussion 3.PubMedCrossRef
11.
go back to reference Seule M, Keller E. Hypothermia after aneurysmal subarachnoid hemorrhage. Crit Care. 2012;16(Suppl 2):21–3.CrossRef Seule M, Keller E. Hypothermia after aneurysmal subarachnoid hemorrhage. Crit Care. 2012;16(Suppl 2):21–3.CrossRef
12.
go back to reference Erecinska M, Thoresen M, Silver IA. Effects of hypothermia on energy metabolism in mammalian central nervous system. J Cereb Blood Flow Metab. 2003;23:513–30.PubMedCrossRef Erecinska M, Thoresen M, Silver IA. Effects of hypothermia on energy metabolism in mammalian central nervous system. J Cereb Blood Flow Metab. 2003;23:513–30.PubMedCrossRef
13.
go back to reference Yenari M, Wijman C, Stienberg G. Effects of hypothermia on cerebral metabolism, blood flow and autoregulation. New York: Marcel Dekker; 2004. Yenari M, Wijman C, Stienberg G. Effects of hypothermia on cerebral metabolism, blood flow and autoregulation. New York: Marcel Dekker; 2004.
14.
go back to reference Rosomoff HL, Holaday DA. Cerebral blood flow and cerebral oxygen consumption during hypothermia. Am J Physiol. 1954;179:85–8.PubMed Rosomoff HL, Holaday DA. Cerebral blood flow and cerebral oxygen consumption during hypothermia. Am J Physiol. 1954;179:85–8.PubMed
15.
go back to reference Ehrlich MP, McCullough JN, Zhang N, et al. Effect of hypothermia on cerebral blood flow and metabolism in the pig. Ann Thorac Surg. 2002;73:191–7.PubMedCrossRef Ehrlich MP, McCullough JN, Zhang N, et al. Effect of hypothermia on cerebral blood flow and metabolism in the pig. Ann Thorac Surg. 2002;73:191–7.PubMedCrossRef
16.
go back to reference Marion DW, Obrist WD, Carlier PM, Penrod LE, Darby JM. The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J Neurosurg. 1993;79:354–62.PubMedCrossRef Marion DW, Obrist WD, Carlier PM, Penrod LE, Darby JM. The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J Neurosurg. 1993;79:354–62.PubMedCrossRef
17.
go back to reference Shiozaki T, Sugimoto H, Taneda M, et al. Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg. 1993;79:363–8.PubMedCrossRef Shiozaki T, Sugimoto H, Taneda M, et al. Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg. 1993;79:363–8.PubMedCrossRef
18.
go back to reference Metz C, Holzschuh M, Bein T, et al. Moderate hypothermia in patients with severe head injury: cerebral and extracerebral effects. J Neurosurg. 1996;85:533–41.PubMedCrossRef Metz C, Holzschuh M, Bein T, et al. Moderate hypothermia in patients with severe head injury: cerebral and extracerebral effects. J Neurosurg. 1996;85:533–41.PubMedCrossRef
19.
go back to reference Keller E, Krayenbuhl N, Bjeljac M, Yonekawa Y. Cerebral vasospasm: results of a structured multimodal treatment. Acta Neurochir Suppl. 2005;94:65–73.PubMedCrossRef Keller E, Krayenbuhl N, Bjeljac M, Yonekawa Y. Cerebral vasospasm: results of a structured multimodal treatment. Acta Neurochir Suppl. 2005;94:65–73.PubMedCrossRef
20.
go back to reference Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–74.PubMedCrossRef Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–74.PubMedCrossRef
21.
go back to reference Krejza J, Mariak Z, Walecki J, Szydlik P, Lewko J, Ustymowicz A. Transcranial color Doppler sonography of basal cerebral arteries in 182 healthy subjects: age and sex variability and normal reference values for blood flow parameters. AJR Am J Roentgenol. 1999;172:213–8.PubMedCrossRef Krejza J, Mariak Z, Walecki J, Szydlik P, Lewko J, Ustymowicz A. Transcranial color Doppler sonography of basal cerebral arteries in 182 healthy subjects: age and sex variability and normal reference values for blood flow parameters. AJR Am J Roentgenol. 1999;172:213–8.PubMedCrossRef
22.
go back to reference Clyde BL, Resnick DK, Yonas H, Smith HA, Kaufmann AM. The relationship of blood velocity as measured by transcranial doppler ultrasonography to cerebral blood flow as determined by stable xenon computed tomographic studies after aneurysmal subarachnoid hemorrhage. Neurosurgery. 1996;38:896–904 discussion-5.PubMedCrossRef Clyde BL, Resnick DK, Yonas H, Smith HA, Kaufmann AM. The relationship of blood velocity as measured by transcranial doppler ultrasonography to cerebral blood flow as determined by stable xenon computed tomographic studies after aneurysmal subarachnoid hemorrhage. Neurosurgery. 1996;38:896–904 discussion-5.PubMedCrossRef
23.
go back to reference Bishop CC, Powell S, Rutt D, Browse NL. Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke. 1986;17:913–5.PubMedCrossRef Bishop CC, Powell S, Rutt D, Browse NL. Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke. 1986;17:913–5.PubMedCrossRef
24.
go back to reference Lindegaard KF, Lundar T, Wiberg J, Sjoberg D, Aaslid R, Nornes H. Variations in middle cerebral artery blood flow investigated with noninvasive transcranial blood velocity measurements. Stroke. 1987;18:1025–30.PubMedCrossRef Lindegaard KF, Lundar T, Wiberg J, Sjoberg D, Aaslid R, Nornes H. Variations in middle cerebral artery blood flow investigated with noninvasive transcranial blood velocity measurements. Stroke. 1987;18:1025–30.PubMedCrossRef
25.
go back to reference Baumgartner RW, Mathis J, Sturzenegger M, Mattle HP. A validation study on the intraobserver reproducibility of transcranial color-coded duplex sonography velocity measurements. Ultrasound Med Biol. 1994;20:233–7.PubMedCrossRef Baumgartner RW, Mathis J, Sturzenegger M, Mattle HP. A validation study on the intraobserver reproducibility of transcranial color-coded duplex sonography velocity measurements. Ultrasound Med Biol. 1994;20:233–7.PubMedCrossRef
26.
go back to reference ter Minassian A, Melon E, Leguerinel C, Lodi CA, Bonnet F, Beydon L. Changes in cerebral blood flow during PaCO2 variations in patients with severe closed head injury: comparison between the Fick and transcranial Doppler methods. J Neurosurg. 1998;88:996–1001.PubMedCrossRef ter Minassian A, Melon E, Leguerinel C, Lodi CA, Bonnet F, Beydon L. Changes in cerebral blood flow during PaCO2 variations in patients with severe closed head injury: comparison between the Fick and transcranial Doppler methods. J Neurosurg. 1998;88:996–1001.PubMedCrossRef
27.
go back to reference Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery. 1993;32:737–41 discussion 41–2.PubMedCrossRef Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery. 1993;32:737–41 discussion 41–2.PubMedCrossRef
28.
go back to reference Fontanella M, Valfre W, Benech F, et al. Vasospasm after SAH due to aneurysm rupture of the anterior circle of Willis: value of TCD monitoring. Neurol Res. 2008;30:256–61.PubMedCrossRef Fontanella M, Valfre W, Benech F, et al. Vasospasm after SAH due to aneurysm rupture of the anterior circle of Willis: value of TCD monitoring. Neurol Res. 2008;30:256–61.PubMedCrossRef
29.
go back to reference Weir B, Macdonald RL, Stoodley M. Etiology of cerebral vasospasm. Acta Neurochir Suppl. 1999;72:27–46.PubMed Weir B, Macdonald RL, Stoodley M. Etiology of cerebral vasospasm. Acta Neurochir Suppl. 1999;72:27–46.PubMed
30.
go back to reference Nemoto EM, Klementavicius R, Melick JA, Yonas H. Suppression of cerebral metabolic rate for oxygen (CMRO2) by mild hypothermia compared with thiopental. J Neurosurg Anesthesiol. 1996;8:52–9.PubMedCrossRef Nemoto EM, Klementavicius R, Melick JA, Yonas H. Suppression of cerebral metabolic rate for oxygen (CMRO2) by mild hypothermia compared with thiopental. J Neurosurg Anesthesiol. 1996;8:52–9.PubMedCrossRef
31.
go back to reference Steen PA, Newberg L, Milde JH, Michenfelder JD. Hypothermia and barbiturates: individual and combined effects on canine cerebral oxygen consumption. Anesthesiology. 1983;58:527–32.PubMedCrossRef Steen PA, Newberg L, Milde JH, Michenfelder JD. Hypothermia and barbiturates: individual and combined effects on canine cerebral oxygen consumption. Anesthesiology. 1983;58:527–32.PubMedCrossRef
32.
go back to reference Kim JH, Kim SH, Yoo SK, Kim JY, Nam YT. The effects of mild hypothermia on thiopental-induced electroencephalogram burst suppression. J Neurosurg Anesthesiol. 1998;10:137–41.PubMedCrossRef Kim JH, Kim SH, Yoo SK, Kim JY, Nam YT. The effects of mild hypothermia on thiopental-induced electroencephalogram burst suppression. J Neurosurg Anesthesiol. 1998;10:137–41.PubMedCrossRef
33.
go back to reference Schwab S, Schwarz S, Aschoff A, Keller E, Hacke W. Moderate hypothermia and brain temperature in patients with severe middle cerebral artery infarction. Acta Neurochir Suppl. 1998;71:131–4.PubMed Schwab S, Schwarz S, Aschoff A, Keller E, Hacke W. Moderate hypothermia and brain temperature in patients with severe middle cerebral artery infarction. Acta Neurochir Suppl. 1998;71:131–4.PubMed
34.
go back to reference Iida K, Kurisu K, Arita K, Ohtani M. Hyperemia prior to acute brain swelling during rewarming of patients who have been treated with moderate hypothermia for severe head injuries. J Neurosurg. 2003;98:793–9.PubMedCrossRef Iida K, Kurisu K, Arita K, Ohtani M. Hyperemia prior to acute brain swelling during rewarming of patients who have been treated with moderate hypothermia for severe head injuries. J Neurosurg. 2003;98:793–9.PubMedCrossRef
35.
go back to reference Giannotta SL, Raisis JE, McGillicuddy JE, Kindt GW. The effect of temperature on cerebrovascular resistance and cerebral metabolism in the primate. J Surg Res. 1978;25:105–10.PubMedCrossRef Giannotta SL, Raisis JE, McGillicuddy JE, Kindt GW. The effect of temperature on cerebrovascular resistance and cerebral metabolism in the primate. J Surg Res. 1978;25:105–10.PubMedCrossRef
36.
go back to reference Van Bel F, Zeeuwe PE, Dorrepaal CA, Benders MJ, Van de Bor M, Hardjowijono R. Changes in cerebral hemodynamics and oxygenation during hypothermic cardiopulmonary bypass in neonates and infants. Biol Neonate. 1996;70:141–54.PubMedCrossRef Van Bel F, Zeeuwe PE, Dorrepaal CA, Benders MJ, Van de Bor M, Hardjowijono R. Changes in cerebral hemodynamics and oxygenation during hypothermic cardiopulmonary bypass in neonates and infants. Biol Neonate. 1996;70:141–54.PubMedCrossRef
37.
go back to reference Keller E, Steiner T, Fandino J, Schwab S, Hacke W. Changes in cerebral blood flow and oxygen metabolism during moderate hypothermia in patients with severe middle cerebral artery infarction. Neurosurg Focus. 2000;8:e4.PubMedCrossRef Keller E, Steiner T, Fandino J, Schwab S, Hacke W. Changes in cerebral blood flow and oxygen metabolism during moderate hypothermia in patients with severe middle cerebral artery infarction. Neurosurg Focus. 2000;8:e4.PubMedCrossRef
38.
go back to reference Nakamura T, Nagao S, Kawai N, Honma Y, Kuyama H. Significance of multimodal cerebral monitoring under moderate therapeutic hypothermia for severe head injury. Acta Neurochir Suppl. 1998;71:85–7.PubMed Nakamura T, Nagao S, Kawai N, Honma Y, Kuyama H. Significance of multimodal cerebral monitoring under moderate therapeutic hypothermia for severe head injury. Acta Neurochir Suppl. 1998;71:85–7.PubMed
39.
go back to reference Bisschops LL, van der Hoeven JG, Hoedemaekers CW. Effects of prolonged mild hypothermia on cerebral blood flow after cardiac arrest. Crit Care Med. 2012;40:2362–7.PubMedCrossRef Bisschops LL, van der Hoeven JG, Hoedemaekers CW. Effects of prolonged mild hypothermia on cerebral blood flow after cardiac arrest. Crit Care Med. 2012;40:2362–7.PubMedCrossRef
40.
go back to reference Török E, Klopotowski M, Trabold R, Thal SC, Plesnila N, Scholler K. Mild hypothermia (33 degrees C) reduces intracranial hypertension and improves functional outcome after subarachnoid hemorrhage in rats. Neurosurgery. 2009;65:352–9 discussion 9.PubMedCrossRef Török E, Klopotowski M, Trabold R, Thal SC, Plesnila N, Scholler K. Mild hypothermia (33 degrees C) reduces intracranial hypertension and improves functional outcome after subarachnoid hemorrhage in rats. Neurosurgery. 2009;65:352–9 discussion 9.PubMedCrossRef
41.
go back to reference Kawamura S, Suzuki A, Hadeishi H, Yasui N, Hatazawa J. Cerebral blood flow and oxygen metabolism during mild hypothermia in patients with subarachnoid haemorrhage. Acta Neurochir (Wien). 2000;142:1117–11121 discussion 21–2.CrossRef Kawamura S, Suzuki A, Hadeishi H, Yasui N, Hatazawa J. Cerebral blood flow and oxygen metabolism during mild hypothermia in patients with subarachnoid haemorrhage. Acta Neurochir (Wien). 2000;142:1117–11121 discussion 21–2.CrossRef
42.
go back to reference Voldby B, Enevoldsen EM, Jensen FT. Regional CBF, intraventricular pressure, and cerebral metabolism in patients with ruptured intracranial aneurysms. J Neurosurg. 1985;62:48–58.PubMedCrossRef Voldby B, Enevoldsen EM, Jensen FT. Regional CBF, intraventricular pressure, and cerebral metabolism in patients with ruptured intracranial aneurysms. J Neurosurg. 1985;62:48–58.PubMedCrossRef
43.
go back to reference Grubb RL Jr, Raichle ME, Eichling JO, Gado MH. Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans. J Neurosurg. 1977;46:446–53.PubMedCrossRef Grubb RL Jr, Raichle ME, Eichling JO, Gado MH. Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans. J Neurosurg. 1977;46:446–53.PubMedCrossRef
44.
go back to reference Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol. 2007;3:256–63.PubMedCrossRef Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol. 2007;3:256–63.PubMedCrossRef
45.
go back to reference Muroi C, Frei K, El Beltagy M, Cesnulis E, Yonekawa Y, Keller E. Combined therapeutic hypothermia and barbiturate coma reduces interleukin-6 in the cerebrospinal fluid after aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2008;20:193–8.PubMedCrossRef Muroi C, Frei K, El Beltagy M, Cesnulis E, Yonekawa Y, Keller E. Combined therapeutic hypothermia and barbiturate coma reduces interleukin-6 in the cerebrospinal fluid after aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2008;20:193–8.PubMedCrossRef
46.
go back to reference Jarus-Dziedzic K, Juniewicz H, Wronski J, et al. The relation between cerebral blood flow velocities as measured by TCD and the incidence of delayed ischemic deficits. A prospective study after subarachnoid hemorrhage. Neurol Res. 2002;24:582–92.PubMedCrossRef Jarus-Dziedzic K, Juniewicz H, Wronski J, et al. The relation between cerebral blood flow velocities as measured by TCD and the incidence of delayed ischemic deficits. A prospective study after subarachnoid hemorrhage. Neurol Res. 2002;24:582–92.PubMedCrossRef
47.
go back to reference Keller E, Imhof HG, Gasser S, Terzic A, Yonekawa Y. Endovascular cooling with heat exchange catheters: a new method to induce and maintain hypothermia. Intensive Care Med. 2003;29:939–43.PubMed Keller E, Imhof HG, Gasser S, Terzic A, Yonekawa Y. Endovascular cooling with heat exchange catheters: a new method to induce and maintain hypothermia. Intensive Care Med. 2003;29:939–43.PubMed
Metadata
Title
Therapeutic Hypothermia Reduces Middle Cerebral Artery Flow Velocity in Patients with Severe Aneurysmal Subarachnoid Hemorrhage
Authors
M. Seule
C. Muroi
C. Sikorski
M. Hugelshofer
K. Winkler
E. Keller
Publication date
01-04-2014
Publisher
Springer US
Published in
Neurocritical Care / Issue 2/2014
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-013-9927-x

Other articles of this Issue 2/2014

Neurocritical Care 2/2014 Go to the issue