Skip to main content
Top
Published in: Neurocritical Care 2/2014

01-04-2014 | Review Article

Glibenclamide in Cerebral Ischemia and Stroke

Authors: J. Marc Simard, Kevin N. Sheth, W. Taylor Kimberly, Barney J. Stern, Gregory J. del Zoppo, Sven Jacobson, Volodymyr Gerzanich

Published in: Neurocritical Care | Issue 2/2014

Login to get access

Abstract

The sulfonylurea receptor 1 (Sur1)–transient receptor potential 4 (Trpm4) channel is an important molecular element in focal cerebral ischemia. The channel is upregulated in all cells of the neurovascular unit following ischemia, and is linked to microvascular dysfunction that manifests as edema formation and secondary hemorrhage, which cause brain swelling. Activation of the channel is a major molecular mechanism of cytotoxic edema and “accidental necrotic cell death.” Blockade of Sur1 using glibenclamide has been studied in different types of rat models of stroke: (i) in conventional non-lethal models (thromboembolic, 1–2 h temporary, or permanent middle cerebral artery occlusion), glibenclamide reduces brain swelling and infarct volume and improves neurological function; (ii) in lethal models of malignant cerebral edema, glibenclamide reduces edema, brain swelling, and mortality; (iii) in models with rtPA, glibenclamide reduces swelling, hemorrhagic transformation, and death. Retrospective studies of diabetic patients who present with stroke have shown that those whose diabetes is managed with a sulfonylurea drug and who are maintained on the sulfonylurea drug during hospitalization for stroke have better outcomes at discharge and are less likely to suffer hemorrhagic transformation. Here, we provide a comprehensive review of the basic science, preclinical experiments, and retrospective clinical studies on glibenclamide in focal cerebral ischemia and stroke. We also compare the preclinical work in stroke models to the updated recommendations of the Stroke Therapy Academic Industry Roundtable (STAIR). The findings reviewed here provide a strong foundation for a translational research program to study glibenclamide in patients with ischemic stroke.
Literature
2.
go back to reference Go AS, Mozaffarian D, Roger VL, et al. Executive summary: Heart Disease and Stroke Statistics–2013 update: a report from the American Heart Association. Circulation. 2013;127:143–52.PubMedCrossRef Go AS, Mozaffarian D, Roger VL, et al. Executive summary: Heart Disease and Stroke Statistics–2013 update: a report from the American Heart Association. Circulation. 2013;127:143–52.PubMedCrossRef
3.
go back to reference Hacke W, Schwab S, Horn M, Spranger M, De GM, von KR. ‘Malignant’ middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol. 1996;53:309–15.PubMedCrossRef Hacke W, Schwab S, Horn M, Spranger M, De GM, von KR. ‘Malignant’ middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol. 1996;53:309–15.PubMedCrossRef
4.
go back to reference Berrouschot J, Sterker M, Bettin S, Koster J, Schneider D. Mortality of space-occupying (‘malignant’) middle cerebral artery infarction under conservative intensive care. Intensive Care Med. 1998;24:620–3.PubMedCrossRef Berrouschot J, Sterker M, Bettin S, Koster J, Schneider D. Mortality of space-occupying (‘malignant’) middle cerebral artery infarction under conservative intensive care. Intensive Care Med. 1998;24:620–3.PubMedCrossRef
5.
go back to reference Adeoye O, Hornung R, Khatri P, Kleindorfer D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke. 2011;42:1952–5.PubMedCrossRef Adeoye O, Hornung R, Khatri P, Kleindorfer D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke. 2011;42:1952–5.PubMedCrossRef
6.
go back to reference Kleindorfer D, Lindsell CJ, Brass L, Koroshetz W, Broderick JP. National US estimates of recombinant tissue plasminogen activator use: ICD-9 codes substantially underestimate. Stroke. 2008;39:924–8.PubMedCrossRef Kleindorfer D, Lindsell CJ, Brass L, Koroshetz W, Broderick JP. National US estimates of recombinant tissue plasminogen activator use: ICD-9 codes substantially underestimate. Stroke. 2008;39:924–8.PubMedCrossRef
7.
go back to reference Singer OC, Hamann GF, Misselwitz B, Steinmetz H, Foerch C. Time trends in systemic thrombolysis in a large hospital-based stroke registry. Cerebrovasc Dis. 2012;33:316–21.PubMedCrossRef Singer OC, Hamann GF, Misselwitz B, Steinmetz H, Foerch C. Time trends in systemic thrombolysis in a large hospital-based stroke registry. Cerebrovasc Dis. 2012;33:316–21.PubMedCrossRef
8.
go back to reference Jauss M, Schutz HJ, Tanislav C, Misselwitz B, Rosenow F. Effect of daytime, weekday and year of admission on outcome in acute ischaemic stroke patients treated with thrombolytic therapy. Eur J Neurol. 2010;17:555–61.PubMedCrossRef Jauss M, Schutz HJ, Tanislav C, Misselwitz B, Rosenow F. Effect of daytime, weekday and year of admission on outcome in acute ischaemic stroke patients treated with thrombolytic therapy. Eur J Neurol. 2010;17:555–61.PubMedCrossRef
9.
go back to reference Bryan J, Munoz A, Zhang X, et al. ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Arch. 2007;453:703–18.PubMedCrossRef Bryan J, Munoz A, Zhang X, et al. ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Arch. 2007;453:703–18.PubMedCrossRef
10.
go back to reference Burke MA, Mutharasan RK, Ardehali H. The sulfonylurea receptor, an atypical ATP-binding cassette protein, and its regulation of the KATP channel. Circ Res. 2008;102:164–76.PubMedCrossRef Burke MA, Mutharasan RK, Ardehali H. The sulfonylurea receptor, an atypical ATP-binding cassette protein, and its regulation of the KATP channel. Circ Res. 2008;102:164–76.PubMedCrossRef
11.
go back to reference Aittoniemi J, Fotinou C, Craig TJ, de WH, Proks P, Ashcroft FM. Review. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Philos Trans R Soc Lond B Biol Sci. 2008;364:257–67.PubMedCentralCrossRef Aittoniemi J, Fotinou C, Craig TJ, de WH, Proks P, Ashcroft FM. Review. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Philos Trans R Soc Lond B Biol Sci. 2008;364:257–67.PubMedCentralCrossRef
12.
go back to reference Woo SK, Kwon MS, Ivanov A, Gerzanich V, Simard JM. The sulfonylurea receptor 1 (sur1)–transient receptor potential melastatin 4 (trpm4) channel. J Biol Chem. 2013;288:3655–67.PubMedCentralPubMedCrossRef Woo SK, Kwon MS, Ivanov A, Gerzanich V, Simard JM. The sulfonylurea receptor 1 (sur1)–transient receptor potential melastatin 4 (trpm4) channel. J Biol Chem. 2013;288:3655–67.PubMedCentralPubMedCrossRef
13.
14.
go back to reference Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab. 2012;32:1699–717.PubMedCentralPubMedCrossRef Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab. 2012;32:1699–717.PubMedCentralPubMedCrossRef
16.
go back to reference Simard JM, Chen M, Tarasov KV, et al. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;12:433–40.PubMedCentralPubMedCrossRef Simard JM, Chen M, Tarasov KV, et al. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;12:433–40.PubMedCentralPubMedCrossRef
17.
go back to reference Simard JM, Tsymbalyuk N, Tsymbalyuk O, Ivanova S, Yurovsky V, Gerzanich V. Glibenclamide is superior to decompressive craniectomy in a rat model of malignant stroke. Stroke. 2010;41:531–7.PubMedCentralPubMedCrossRef Simard JM, Tsymbalyuk N, Tsymbalyuk O, Ivanova S, Yurovsky V, Gerzanich V. Glibenclamide is superior to decompressive craniectomy in a rat model of malignant stroke. Stroke. 2010;41:531–7.PubMedCentralPubMedCrossRef
18.
go back to reference Mehta RI, Ivanova S, Tosun C, Castellani RJ, Gerzanich V, Simard JM. Sulfonylurea receptor 1 expression in human cerebral infarcts. J Neuropathol Exp Neurol. 2013;72:871–83.PubMedCentralPubMedCrossRef Mehta RI, Ivanova S, Tosun C, Castellani RJ, Gerzanich V, Simard JM. Sulfonylurea receptor 1 expression in human cerebral infarcts. J Neuropathol Exp Neurol. 2013;72:871–83.PubMedCentralPubMedCrossRef
20.
21.
22.
go back to reference Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium. 2003;34:325–37.PubMedCrossRef Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium. 2003;34:325–37.PubMedCrossRef
23.
go back to reference Liss B, Roeper J. Molecular physiology of neuronal K-ATP channels (review). Mol Membr Biol. 2001;18:117–27.PubMedCrossRef Liss B, Roeper J. Molecular physiology of neuronal K-ATP channels (review). Mol Membr Biol. 2001;18:117–27.PubMedCrossRef
24.
go back to reference Pelletier MR, Pahapill PA, Pennefather PS, Carlen PL. Analysis of single K(ATP) channels in mammalian dentate gyrus granule cells. J Neurophysiol. 2000;84:2291–301.PubMed Pelletier MR, Pahapill PA, Pennefather PS, Carlen PL. Analysis of single K(ATP) channels in mammalian dentate gyrus granule cells. J Neurophysiol. 2000;84:2291–301.PubMed
25.
go back to reference Sullivan HC, Harik SI. ATP-sensitive potassium channels are not expressed in brain microvessels. Brain Res. 1993;612:336–8.PubMedCrossRef Sullivan HC, Harik SI. ATP-sensitive potassium channels are not expressed in brain microvessels. Brain Res. 1993;612:336–8.PubMedCrossRef
26.
go back to reference Woo SK, Kwon MS, Geng Z, et al. Sequential activation of hypoxia-inducible factor 1 and specificity protein 1 is required for hypoxia-induced transcriptional stimulation of Abcc8. J Cereb Blood Flow Metab. 2012;32:525–36.PubMedCentralPubMedCrossRef Woo SK, Kwon MS, Geng Z, et al. Sequential activation of hypoxia-inducible factor 1 and specificity protein 1 is required for hypoxia-induced transcriptional stimulation of Abcc8. J Cereb Blood Flow Metab. 2012;32:525–36.PubMedCentralPubMedCrossRef
27.
go back to reference Simard JM, Woo SK, Tsymbalyuk N, et al. Glibenclamide-10-h treatment window in a clinically relevant model of stroke. Transl Stroke Res. 2012;3:286–95.PubMedCentralPubMedCrossRef Simard JM, Woo SK, Tsymbalyuk N, et al. Glibenclamide-10-h treatment window in a clinically relevant model of stroke. Transl Stroke Res. 2012;3:286–95.PubMedCentralPubMedCrossRef
28.
go back to reference Simard JM, Tsymbalyuk O, Ivanov A, et al. Endothelial sulfonylurea receptor 1-regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury. J Clin Invest. 2007;117:2105–13.PubMedCentralPubMedCrossRef Simard JM, Tsymbalyuk O, Ivanov A, et al. Endothelial sulfonylurea receptor 1-regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury. J Clin Invest. 2007;117:2105–13.PubMedCentralPubMedCrossRef
29.
go back to reference Simard JM, Geng Z, Woo SK, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29:317–30.PubMedCentralPubMedCrossRef Simard JM, Geng Z, Woo SK, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29:317–30.PubMedCentralPubMedCrossRef
30.
31.
go back to reference Chen M, Dong Y, Simard JM. Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J Neurosci. 2003;23:8568–77.PubMed Chen M, Dong Y, Simard JM. Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J Neurosci. 2003;23:8568–77.PubMed
33.
go back to reference Findlay I. Effects of pH upon the inhibition by sulphonylurea drugs of ATP-sensitive K+ channels in cardiac muscle. J Pharmacol Exp Ther. 1992;262:71–9.PubMed Findlay I. Effects of pH upon the inhibition by sulphonylurea drugs of ATP-sensitive K+ channels in cardiac muscle. J Pharmacol Exp Ther. 1992;262:71–9.PubMed
34.
go back to reference Tomiyama Y, Brian JE Jr, Todd MM. Cerebral blood flow during hemodilution and hypoxia in rats : role of ATP-sensitive potassium channels. Stroke. 1999;30:1942–7.PubMedCrossRef Tomiyama Y, Brian JE Jr, Todd MM. Cerebral blood flow during hemodilution and hypoxia in rats : role of ATP-sensitive potassium channels. Stroke. 1999;30:1942–7.PubMedCrossRef
35.
go back to reference Nedergaard M, Kraig RP, Tanabe J, Pulsinelli WA. Dynamics of interstitial and intracellular pH in evolving brain infarct. Am J Physiol. 1991;260:R581–8.PubMedCentralPubMed Nedergaard M, Kraig RP, Tanabe J, Pulsinelli WA. Dynamics of interstitial and intracellular pH in evolving brain infarct. Am J Physiol. 1991;260:R581–8.PubMedCentralPubMed
36.
go back to reference Ortega FJ, Gimeno-Bayon J, Espinosa-Parrilla JF, et al. ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia–ischemia in rats. Exp Neurol. 2012;235:282–96.PubMedCrossRef Ortega FJ, Gimeno-Bayon J, Espinosa-Parrilla JF, et al. ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia–ischemia in rats. Exp Neurol. 2012;235:282–96.PubMedCrossRef
37.
go back to reference Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6:258–68.PubMedCentralPubMedCrossRef Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6:258–68.PubMedCentralPubMedCrossRef
38.
go back to reference Weiss N, Miller F, Cazaubon S, Couraud PO. The blood–brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta. 2009;1788:842–57.PubMedCrossRef Weiss N, Miller F, Cazaubon S, Couraud PO. The blood–brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta. 2009;1788:842–57.PubMedCrossRef
39.
go back to reference Simard JM, Yurovsky V, Tsymbalyuk N, Melnichenko L, Ivanova S, Gerzanich V. Protective effect of delayed treatment with low-dose glibenclamide in three models of ischemic stroke. Stroke. 2009;40:604–9.PubMedCentralPubMedCrossRef Simard JM, Yurovsky V, Tsymbalyuk N, Melnichenko L, Ivanova S, Gerzanich V. Protective effect of delayed treatment with low-dose glibenclamide in three models of ischemic stroke. Stroke. 2009;40:604–9.PubMedCentralPubMedCrossRef
40.
go back to reference Ortega FJ, Jolkkonen J, Mahy N, Rodriguez MJ. Glibenclamide enhances neurogenesis and improves long-term functional recovery after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2012;33:356–64.PubMedCentralPubMedCrossRef Ortega FJ, Jolkkonen J, Mahy N, Rodriguez MJ. Glibenclamide enhances neurogenesis and improves long-term functional recovery after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2012;33:356–64.PubMedCentralPubMedCrossRef
41.
go back to reference Wali B, Ishrat T, Atif F, Hua F, Stein DG, Sayeed I. Glibenclamide administration attenuates infarct volume, hemispheric swelling, and functional impairments following permanent focal cerebral ischemia in rats. Stroke Res Treat. 2012;2012:460909. doi:10.1155/2012/460909.PubMedCentralPubMed Wali B, Ishrat T, Atif F, Hua F, Stein DG, Sayeed I. Glibenclamide administration attenuates infarct volume, hemispheric swelling, and functional impairments following permanent focal cerebral ischemia in rats. Stroke Res Treat. 2012;2012:460909. doi:10.​1155/​2012/​460909.PubMedCentralPubMed
42.
go back to reference Petullo D, Masonic K, Lincoln C, Wibberley L, Teliska M, Yao DL. Model development and behavioral assessment of focal cerebral ischemia in rats. Life Sci. 1999;64:1099–108.PubMedCrossRef Petullo D, Masonic K, Lincoln C, Wibberley L, Teliska M, Yao DL. Model development and behavioral assessment of focal cerebral ischemia in rats. Life Sci. 1999;64:1099–108.PubMedCrossRef
43.
go back to reference Virtanen T, Sivenius J, Jolkkonen J. Dehydration and stress do not explain severe weight loss after experimental stroke in rats. J Animal Vet Adv. 2003;2:247–52. Virtanen T, Sivenius J, Jolkkonen J. Dehydration and stress do not explain severe weight loss after experimental stroke in rats. J Animal Vet Adv. 2003;2:247–52.
44.
go back to reference Virtanen T, Jolkkonen J, Sivenius J. Re: External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats. Stroke. 2004;35:e9–10.PubMedCrossRef Virtanen T, Jolkkonen J, Sivenius J. Re: External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats. Stroke. 2004;35:e9–10.PubMedCrossRef
46.
go back to reference Abdallah DM, Nassar NN, Abd-El-Salam RM. Glibenclamide ameliorates ischemia-reperfusion injury via modulating oxidative stress and inflammatory mediators in the rat hippocampus. Brain Res. 2011;1385:257–62.PubMedCrossRef Abdallah DM, Nassar NN, Abd-El-Salam RM. Glibenclamide ameliorates ischemia-reperfusion injury via modulating oxidative stress and inflammatory mediators in the rat hippocampus. Brain Res. 2011;1385:257–62.PubMedCrossRef
47.
go back to reference Figura M, Chilton L, Liacini A, et al. Blockade of K(ATP) channels reduces endothelial hyperpolarization and leukocyte recruitment upon reperfusion after hypoxia. Am J Transplant. 2009;9:687–96.PubMedCrossRef Figura M, Chilton L, Liacini A, et al. Blockade of K(ATP) channels reduces endothelial hyperpolarization and leukocyte recruitment upon reperfusion after hypoxia. Am J Transplant. 2009;9:687–96.PubMedCrossRef
48.
go back to reference Da Silva-Santos JE, Santos-Silva MC, Cunha FQ, Assreuy J. The role of ATP-sensitive potassium channels in neutrophil migration and plasma exudation. J Pharmacol Exp Ther. 2002;300:946–51.PubMedCrossRef Da Silva-Santos JE, Santos-Silva MC, Cunha FQ, Assreuy J. The role of ATP-sensitive potassium channels in neutrophil migration and plasma exudation. J Pharmacol Exp Ther. 2002;300:946–51.PubMedCrossRef
49.
go back to reference Pompermayer K, Amaral FA, Fagundes CT, et al. Effects of the treatment with glibenclamide, an ATP-sensitive potassium channel blocker, on intestinal ischemia and reperfusion injury. Eur J Pharmacol. 2007;556:215–22.PubMedCrossRef Pompermayer K, Amaral FA, Fagundes CT, et al. Effects of the treatment with glibenclamide, an ATP-sensitive potassium channel blocker, on intestinal ischemia and reperfusion injury. Eur J Pharmacol. 2007;556:215–22.PubMedCrossRef
50.
go back to reference Pompermayer K, Souza DG, Lara GG, et al. The ATP-sensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats. Kidney Int. 2005;67:1785–96.PubMedCrossRef Pompermayer K, Souza DG, Lara GG, et al. The ATP-sensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats. Kidney Int. 2005;67:1785–96.PubMedCrossRef
51.
go back to reference Nistico R, Piccirilli S, Sebastianelli L, Nistico G, Bernardi G, Mercuri NB. The blockade of K(+)-ATP channels has neuroprotective effects in an in vitro model of brain ischemia. Int Rev Neurobiol. 2007;82:383–95.PubMedCrossRef Nistico R, Piccirilli S, Sebastianelli L, Nistico G, Bernardi G, Mercuri NB. The blockade of K(+)-ATP channels has neuroprotective effects in an in vitro model of brain ischemia. Int Rev Neurobiol. 2007;82:383–95.PubMedCrossRef
52.
go back to reference Huang H, Gao TM, Gong L, Zhuang Z, Li X. Potassium channel blocker TEA prevents CA1 hippocampal injury following transient forebrain ischemia in adult rats. Neurosci Lett. 2001;305:83–6.PubMedCrossRef Huang H, Gao TM, Gong L, Zhuang Z, Li X. Potassium channel blocker TEA prevents CA1 hippocampal injury following transient forebrain ischemia in adult rats. Neurosci Lett. 2001;305:83–6.PubMedCrossRef
53.
go back to reference Ortega FJ, Jolkkonen J, Rodriguez MJ. Microglia is an active player in how glibenclamide improves stroke outcome. J Cereb Blood Flow Metab. 2013;33:1138–9.PubMedCrossRef Ortega FJ, Jolkkonen J, Rodriguez MJ. Microglia is an active player in how glibenclamide improves stroke outcome. J Cereb Blood Flow Metab. 2013;33:1138–9.PubMedCrossRef
54.
go back to reference Schaller B, editor. Cerebral ischemic tolerance: from animal models to clinical relevance. New York: Nova Science Publishers; 2004. Schaller B, editor. Cerebral ischemic tolerance: from animal models to clinical relevance. New York: Nova Science Publishers; 2004.
55.
go back to reference Durukan A, Tatlisumak T. Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection. Exp Transl Stroke Med. 2010;2:2.PubMedCentralPubMedCrossRef Durukan A, Tatlisumak T. Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection. Exp Transl Stroke Med. 2010;2:2.PubMedCentralPubMedCrossRef
57.
go back to reference Dirnagl U, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 2003;26:248–54.PubMedCrossRef Dirnagl U, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 2003;26:248–54.PubMedCrossRef
58.
go back to reference Heurteaux C, Lauritzen I, Widmann C, Lazdunski M. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci U S A. 1995;92:4666–70.PubMedCentralPubMedCrossRef Heurteaux C, Lauritzen I, Widmann C, Lazdunski M. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci U S A. 1995;92:4666–70.PubMedCentralPubMedCrossRef
59.
go back to reference Sorimachi T, Nowak TS Jr. Pharmacological manipulations of ATP-dependent potassium channels and adenosine A1 receptors do not impact hippocampal ischemic preconditioning in vivo: evidence in a highly quantitative gerbil model. J Cereb Blood Flow Metab. 2004;24:556–63.PubMedCrossRef Sorimachi T, Nowak TS Jr. Pharmacological manipulations of ATP-dependent potassium channels and adenosine A1 receptors do not impact hippocampal ischemic preconditioning in vivo: evidence in a highly quantitative gerbil model. J Cereb Blood Flow Metab. 2004;24:556–63.PubMedCrossRef
60.
go back to reference Munoz A, Nakazaki M, Goodman JC, et al. Ischemic preconditioning in the hippocampus of a knockout mouse lacking SUR1-based K(ATP) channels. Stroke. 2003;34:164–70.PubMedCrossRef Munoz A, Nakazaki M, Goodman JC, et al. Ischemic preconditioning in the hippocampus of a knockout mouse lacking SUR1-based K(ATP) channels. Stroke. 2003;34:164–70.PubMedCrossRef
61.
go back to reference Hamann GF. Clinical aspects of ischemic tolerance in the brain. In: Schaller B, editor. Cerebral ischemic tolerance: from animal models to clinical relevance. New York: Nova Science Publishers; 2004. p. 115–9. Hamann GF. Clinical aspects of ischemic tolerance in the brain. In: Schaller B, editor. Cerebral ischemic tolerance: from animal models to clinical relevance. New York: Nova Science Publishers; 2004. p. 115–9.
62.
go back to reference Kunte H, Schmidt S, Eliasziw M, et al. Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke. 2007;38:2526–30.PubMedCentralPubMedCrossRef Kunte H, Schmidt S, Eliasziw M, et al. Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke. 2007;38:2526–30.PubMedCentralPubMedCrossRef
63.
go back to reference No authors listed. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 1999; 30: 2752–2758. No authors listed. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 1999; 30: 2752–2758.
64.
go back to reference Fisher M, Feuerstein G, Howells DW, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40:2244–50.PubMedCentralPubMedCrossRef Fisher M, Feuerstein G, Howells DW, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40:2244–50.PubMedCentralPubMedCrossRef
65.
go back to reference Tosun C, Koltz MT, Kurland DB, et al. The protective effect of glibenclamide in a model of hemorrhagic encephalopathy of prematurity. Brain Sci. 2013;3:215–38.PubMedCentralPubMedCrossRef Tosun C, Koltz MT, Kurland DB, et al. The protective effect of glibenclamide in a model of hemorrhagic encephalopathy of prematurity. Brain Sci. 2013;3:215–38.PubMedCentralPubMedCrossRef
66.
go back to reference Toyota S, Graf R, Valentino M, Yoshimine T, Heiss WD. Prediction of malignant infarction: perifocal neurochemical monitoring following prolonged MCA occlusion in cats. Acta Neurochir Suppl. 2003;86:153–7.PubMed Toyota S, Graf R, Valentino M, Yoshimine T, Heiss WD. Prediction of malignant infarction: perifocal neurochemical monitoring following prolonged MCA occlusion in cats. Acta Neurochir Suppl. 2003;86:153–7.PubMed
67.
go back to reference Toyota S, Graf R, Valentino M, Yoshimine T, Heiss WD. Malignant infarction in cats after prolonged middle cerebral artery occlusion: glutamate elevation related to decrease of cerebral perfusion pressure. Stroke. 2002;33:1383–91.PubMedCrossRef Toyota S, Graf R, Valentino M, Yoshimine T, Heiss WD. Malignant infarction in cats after prolonged middle cerebral artery occlusion: glutamate elevation related to decrease of cerebral perfusion pressure. Stroke. 2002;33:1383–91.PubMedCrossRef
68.
go back to reference del Zoppo GJ, Copeland BR, Harker LA, et al. Experimental acute thrombotic stroke in baboons. Stroke. 1986;17:1254–65.PubMedCrossRef del Zoppo GJ, Copeland BR, Harker LA, et al. Experimental acute thrombotic stroke in baboons. Stroke. 1986;17:1254–65.PubMedCrossRef
69.
go back to reference Fukuda S, del Zoppo GJ. Models of focal cerebral ischemia in the nonhuman primate. ILAR J. 2003;44:96–104.PubMedCrossRef Fukuda S, del Zoppo GJ. Models of focal cerebral ischemia in the nonhuman primate. ILAR J. 2003;44:96–104.PubMedCrossRef
71.
go back to reference Bahjat FR, Williams-Karnesky RL, Kohama SG, et al. Proof of concept: pharmacological preconditioning with a Toll-like receptor agonist protects against cerebrovascular injury in a primate model of stroke. J Cereb Blood Flow Metab. 2011;31:1229–42.PubMedCentralPubMedCrossRef Bahjat FR, Williams-Karnesky RL, Kohama SG, et al. Proof of concept: pharmacological preconditioning with a Toll-like receptor agonist protects against cerebrovascular injury in a primate model of stroke. J Cereb Blood Flow Metab. 2011;31:1229–42.PubMedCentralPubMedCrossRef
73.
go back to reference Cook DJ, Teves L, Tymianski M. A translational paradigm for the preclinical evaluation of the stroke neuroprotectant Tat-NR2B9c in gyrencephalic nonhuman primates. Sci Transl Med. 2012;4:154ra133.PubMed Cook DJ, Teves L, Tymianski M. A translational paradigm for the preclinical evaluation of the stroke neuroprotectant Tat-NR2B9c in gyrencephalic nonhuman primates. Sci Transl Med. 2012;4:154ra133.PubMed
74.
go back to reference Zabramski JM, Spetzler RF, Selman WR, et al. Naloxone therapy during focal cerebral ischemia evaluation in a primate model. Stroke. 1984;15:621–7.PubMedCrossRef Zabramski JM, Spetzler RF, Selman WR, et al. Naloxone therapy during focal cerebral ischemia evaluation in a primate model. Stroke. 1984;15:621–7.PubMedCrossRef
75.
go back to reference Weih M, Amberger N, Wegener S, Dirnagl U, Reuter T, Einhaupl K. Sulfonylurea drugs do not influence initial stroke severity and in-hospital outcome in stroke patients with diabetes. Stroke. 2001;32:2029–32.PubMedCrossRef Weih M, Amberger N, Wegener S, Dirnagl U, Reuter T, Einhaupl K. Sulfonylurea drugs do not influence initial stroke severity and in-hospital outcome in stroke patients with diabetes. Stroke. 2001;32:2029–32.PubMedCrossRef
76.
go back to reference Favilla CG, Mullen MT, Ali M, Higgins P, Kasner SE. Sulfonylurea use before stroke does not influence outcome. Stroke. 2011;42:710–5.PubMedCrossRef Favilla CG, Mullen MT, Ali M, Higgins P, Kasner SE. Sulfonylurea use before stroke does not influence outcome. Stroke. 2011;42:710–5.PubMedCrossRef
77.
go back to reference Silver FL, Fang J, Robertson AC, Casaubon L, Kapral MK. Possible neuroprotective effects of sulfonylureas in diabetic patients with acute ischemic stroke. Stroke. 2009;40:51. Silver FL, Fang J, Robertson AC, Casaubon L, Kapral MK. Possible neuroprotective effects of sulfonylureas in diabetic patients with acute ischemic stroke. Stroke. 2009;40:51.
78.
go back to reference Mishra MK, Ray D, Barik BB. Microcapsules and transdermal patch: a comparative approach for improved delivery of antidiabetic drug. AAPS PharmSciTech. 2009;10:928–34.PubMedCentralPubMedCrossRef Mishra MK, Ray D, Barik BB. Microcapsules and transdermal patch: a comparative approach for improved delivery of antidiabetic drug. AAPS PharmSciTech. 2009;10:928–34.PubMedCentralPubMedCrossRef
79.
go back to reference Zhou Y, Fathali N, Lekic T, Tang J, Zhang JH. Glibenclamide improves neurological function in neonatal hypoxia-ischemia in rats. Brain Res. 2009;1270:131–9.PubMedCrossRef Zhou Y, Fathali N, Lekic T, Tang J, Zhang JH. Glibenclamide improves neurological function in neonatal hypoxia-ischemia in rats. Brain Res. 2009;1270:131–9.PubMedCrossRef
80.
go back to reference Gray CS, Hildreth AJ, Sandercock PA, et al. Glucose–potassium–insulin infusions in the management of post-stroke hyperglycaemia: the UK glucose insulin in stroke trial (GIST-UK). Lancet Neurol. 2007;6:397–406.PubMedCrossRef Gray CS, Hildreth AJ, Sandercock PA, et al. Glucose–potassium–insulin infusions in the management of post-stroke hyperglycaemia: the UK glucose insulin in stroke trial (GIST-UK). Lancet Neurol. 2007;6:397–406.PubMedCrossRef
81.
go back to reference Bruno A, Kent TA, Coull BM, et al. Treatment of hyperglycemia in ischemic stroke (THIS): a randomized pilot trial. Stroke. 2008;39:384–9.PubMedCrossRef Bruno A, Kent TA, Coull BM, et al. Treatment of hyperglycemia in ischemic stroke (THIS): a randomized pilot trial. Stroke. 2008;39:384–9.PubMedCrossRef
82.
go back to reference Johnston KC, Hall CE, Kissela BM, Bleck TP, Conaway MR. Glucose regulation in acute stroke patients (GRASP) trial: a randomized pilot trial. Stroke. 2009;40:3804–9.PubMedCentralPubMedCrossRef Johnston KC, Hall CE, Kissela BM, Bleck TP, Conaway MR. Glucose regulation in acute stroke patients (GRASP) trial: a randomized pilot trial. Stroke. 2009;40:3804–9.PubMedCentralPubMedCrossRef
83.
go back to reference O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59:467–77.PubMedCrossRef O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59:467–77.PubMedCrossRef
84.
go back to reference Arboix A. Potential impact of sulfonylureas in the outcome of type 2 diabetic patients with ischemic stroke. Stroke. 2007;38:2413–4.PubMedCrossRef Arboix A. Potential impact of sulfonylureas in the outcome of type 2 diabetic patients with ischemic stroke. Stroke. 2007;38:2413–4.PubMedCrossRef
Metadata
Title
Glibenclamide in Cerebral Ischemia and Stroke
Authors
J. Marc Simard
Kevin N. Sheth
W. Taylor Kimberly
Barney J. Stern
Gregory J. del Zoppo
Sven Jacobson
Volodymyr Gerzanich
Publication date
01-04-2014
Publisher
Springer US
Published in
Neurocritical Care / Issue 2/2014
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-013-9923-1

Other articles of this Issue 2/2014

Neurocritical Care 2/2014 Go to the issue