Skip to main content
Top
Published in: Neurocritical Care 2/2013

01-10-2013 | TAKE A CLOSER LOOK AT TRIALS

High Dose Deferoxamine in Intracerebral Hemorrhage (Hi-Def) Trial: Rationale, Design, and Methods

Authors: Sharon D. Yeatts, Yuko Y. Palesch, Claudia S. Moy, Magdy Selim

Published in: Neurocritical Care | Issue 2/2013

Login to get access

Abstract

Background

Hemoglobin degradation products, in particular iron, have been implicated in secondary neuronal injury following intracerebral hemorrhage (ICH). The iron chelator Deferoxamine Mesylate (DFO) exerts diverse neuroprotective effects, reduces perihematoma edema (PHE) and neuronal damage, and improves functional recovery after experimental ICH. We hypothesize that treatment with DFO could minimize neuronal injury and improve outcome in ICH patients. As a prelude to test this hypothesis, we conducted a Phase I, open-label study to determine the tolerability, safety, and maximum tolerated dose (MTD) of DFO in patients with ICH. Intravenous infusions of DFO in doses up to 62 mg/kg/day (up to a maximum of 6000 mg/day) were well-tolerated and did not seem to increase serious adverse events (SAEs) or mortality. We have initiated a multi-center, double-blind, randomized, placebo-controlled, Phase II clinical trial (High Dose Deferoxamine [HI-DEF] in Intracerebral Hemorrhage) to determine if it is futile to move DFO forward to Phase III efficacy evaluation.

Methods

We will randomize 324 subjects with spontaneous ICH to either DFO at 62 mg/kg/day (up to a maximum daily dose of 6000 mg/day) or saline placebo, given by intravenous infusion for 5 consecutive days. Treatment will be initiated within 24 hours after ICH symptom onset. All subjects will be followed for 3 months and will receive standard of care therapy while participating in the study. At 3 months, the proportion of DFO-treated subjects with a good clinical outcome, assessed by modified Rankin Scale, will be compared to the placebo proportion in a futility analysis.

Conclusions

The Hi-Def trial is expected to advance our understanding of the pathopgysiology of secondary neuronal injury in ICH and will provide a crucial “Go/No Go” signal as to whether a Phase III trial to investigate the efficacy of DFO is warranted.
Literature
1.
go back to reference Castillo J, Davalos A, Alvarez-Sabin J, Pumar JM, Leira R, Silva Y, Montaner J, et al. Molecular signatures of brain injury after intracerebral hemorrhage. Neurology. 2002;58(4):624–9.PubMedCrossRef Castillo J, Davalos A, Alvarez-Sabin J, Pumar JM, Leira R, Silva Y, Montaner J, et al. Molecular signatures of brain injury after intracerebral hemorrhage. Neurology. 2002;58(4):624–9.PubMedCrossRef
2.
go back to reference He Y, Wan S, Hua Y, Keep RF, Xi G. Autophagy after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab. 2008;28(5):897–905.PubMedCrossRef He Y, Wan S, Hua Y, Keep RF, Xi G. Autophagy after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab. 2008;28(5):897–905.PubMedCrossRef
3.
go back to reference Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg. 2002;96(2):287–93.PubMedCrossRef Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg. 2002;96(2):287–93.PubMedCrossRef
4.
go back to reference Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF. Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab. 2003;23(6):629–52.PubMedCrossRef Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF. Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab. 2003;23(6):629–52.PubMedCrossRef
5.
go back to reference Selim M. Deferoxamine mesylate: a new hope for intracerebral hemorrhage: from bench to clinical trials. Stroke. 2009;40(3 Suppl):S90–1.PubMedCrossRef Selim M. Deferoxamine mesylate: a new hope for intracerebral hemorrhage: from bench to clinical trials. Stroke. 2009;40(3 Suppl):S90–1.PubMedCrossRef
6.
go back to reference Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg. 2004;100(4):672–8.PubMedCrossRef Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg. 2004;100(4):672–8.PubMedCrossRef
7.
go back to reference Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke. 2009;40:2241–3.PubMedCrossRef Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke. 2009;40:2241–3.PubMedCrossRef
8.
go back to reference Okauchi M, Hua Y, Keep RF, Morgenstern LB, Xi G. Effects of deferoxamine on intracerebral hemorrhage-induced brain injury in aged rats. Stroke. 2009;40:1858–63.PubMedCrossRef Okauchi M, Hua Y, Keep RF, Morgenstern LB, Xi G. Effects of deferoxamine on intracerebral hemorrhage-induced brain injury in aged rats. Stroke. 2009;40:1858–63.PubMedCrossRef
9.
go back to reference Wan S, Hua Y, Keep RF, Hoff JT, Xi G. Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage. Acta Neurochir Suppl. 2006;96:199–202.PubMedCrossRef Wan S, Hua Y, Keep RF, Hoff JT, Xi G. Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage. Acta Neurochir Suppl. 2006;96:199–202.PubMedCrossRef
10.
go back to reference Messer JG, Cooney PT, Kipp DE. Iron chelator deferoxamine alters iron-regulatory genes and proteins and suppresses osteoblast phenotype in fetal rat calvaria cells. Bone. 2010;46(5):1408–15.PubMedCrossRef Messer JG, Cooney PT, Kipp DE. Iron chelator deferoxamine alters iron-regulatory genes and proteins and suppresses osteoblast phenotype in fetal rat calvaria cells. Bone. 2010;46(5):1408–15.PubMedCrossRef
11.
go back to reference Ratan RR, Siddiq A, Aminova L, Langley B, McConoughey S, Karpisheva K, et al. Small molecule activation of adaptive gene expression: tilorone or its analogs are novel potent activators of hypoxia inducible factor-1 that provide prophylaxis against stroke and spinal cord injury. Ann N Y Acad Sci. 2008;1147:383–94.PubMedCrossRef Ratan RR, Siddiq A, Aminova L, Langley B, McConoughey S, Karpisheva K, et al. Small molecule activation of adaptive gene expression: tilorone or its analogs are novel potent activators of hypoxia inducible factor-1 that provide prophylaxis against stroke and spinal cord injury. Ann N Y Acad Sci. 2008;1147:383–94.PubMedCrossRef
12.
go back to reference Wan S, Zhan R, Zheng S, Hua Y, Xi G. Activation of c-Jun-N-terminal kinase in a rat model of intracerebral hemorrhage: the role of iron. Neurosci Res. 2009;63:100–5.PubMedCrossRef Wan S, Zhan R, Zheng S, Hua Y, Xi G. Activation of c-Jun-N-terminal kinase in a rat model of intracerebral hemorrhage: the role of iron. Neurosci Res. 2009;63:100–5.PubMedCrossRef
13.
go back to reference Tanji K, Imaizumi T, Matsumiya T, Itaya H, Fujimoto K, Cui X, et al. Desferrioxamine, an iron chelator, upregulates cyclooxygenase-2 expression and prostaglandin production in a human macrophage cell line. Biochim Biophys Acta. 2001;1530(2–3):227–35.PubMed Tanji K, Imaizumi T, Matsumiya T, Itaya H, Fujimoto K, Cui X, et al. Desferrioxamine, an iron chelator, upregulates cyclooxygenase-2 expression and prostaglandin production in a human macrophage cell line. Biochim Biophys Acta. 2001;1530(2–3):227–35.PubMed
14.
go back to reference Suri MF, Suarez JI, Rodrigue TC, Zaidat OO, Vazquez G, Wensel A, et al. Effect of treatment of elevated blood pressure on neurological deterioration in patients with acute intracerebral hemorrhage. Neurocrit Care. 2008;9(2):177–82.PubMedCrossRef Suri MF, Suarez JI, Rodrigue TC, Zaidat OO, Vazquez G, Wensel A, et al. Effect of treatment of elevated blood pressure on neurological deterioration in patients with acute intracerebral hemorrhage. Neurocrit Care. 2008;9(2):177–82.PubMedCrossRef
15.
go back to reference Selim M, Yeatts S, Goldstein JN, Gomes J, Greenberg S, Morgenstern LB, et al. Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage. Stroke. 2011;42(11):3067–74.PubMedCrossRef Selim M, Yeatts S, Goldstein JN, Gomes J, Greenberg S, Morgenstern LB, et al. Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage. Stroke. 2011;42(11):3067–74.PubMedCrossRef
16.
go back to reference Haley EC Jr, Thompson JL, Levin B, Davis S, Lees KR, Pittman JG, et al. Gavestinel does not improve outcome after acute intracerebral hemorrhage: an analysis from the GAIN International and GAIN Americas studies. Stroke. 2005;36(5):1006–10.PubMedCrossRef Haley EC Jr, Thompson JL, Levin B, Davis S, Lees KR, Pittman JG, et al. Gavestinel does not improve outcome after acute intracerebral hemorrhage: an analysis from the GAIN International and GAIN Americas studies. Stroke. 2005;36(5):1006–10.PubMedCrossRef
17.
go back to reference Lyden PD, Shuaib A, Lees KR, Davalos A, Davis SM, Diener HC, et al. Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: the CHANT Trial. Stroke. 2007;38(8):2262–9.PubMedCrossRef Lyden PD, Shuaib A, Lees KR, Davalos A, Davis SM, Diener HC, et al. Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: the CHANT Trial. Stroke. 2007;38(8):2262–9.PubMedCrossRef
18.
go back to reference Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2005;352(8):777–85.PubMedCrossRef Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2005;352(8):777–85.PubMedCrossRef
19.
go back to reference Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer M, et al. Efficacy and safety of recombinant activated factor VII for acute ICH. N Engl J Med. 2008;358:2127–37.PubMedCrossRef Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer M, et al. Efficacy and safety of recombinant activated factor VII for acute ICH. N Engl J Med. 2008;358:2127–37.PubMedCrossRef
20.
go back to reference Chow S, Shao J, Wang H. Sample size calculations in clinical research. Boca Raton: CRC press; 2003. Chow S, Shao J, Wang H. Sample size calculations in clinical research. Boca Raton: CRC press; 2003.
21.
go back to reference Friedman LM, Furberg CD, DeMets DL. Fundamentals of clinical trials. 3rd ed. New York: Springer; 1998.CrossRef Friedman LM, Furberg CD, DeMets DL. Fundamentals of clinical trials. 3rd ed. New York: Springer; 1998.CrossRef
22.
go back to reference McCarron MO, Hoffmann KL, DeLong DM, Gray L, Saunders AM, Alberts MJ. Intracerebral hemorrhage outcome: apolipoprotein E genotype, hematoma, and edema volumes. Neurology. 1999;53(9):2176–9.PubMedCrossRef McCarron MO, Hoffmann KL, DeLong DM, Gray L, Saunders AM, Alberts MJ. Intracerebral hemorrhage outcome: apolipoprotein E genotype, hematoma, and edema volumes. Neurology. 1999;53(9):2176–9.PubMedCrossRef
23.
go back to reference Sansing LH, Messe SR, Cucchiara BL, Lyden PD, Kasner SE. Anti-adrenergic medications and edema development after intracerebral hemorrhage. Neurocrit Care. 2011;14(3):395–400.PubMedCrossRef Sansing LH, Messe SR, Cucchiara BL, Lyden PD, Kasner SE. Anti-adrenergic medications and edema development after intracerebral hemorrhage. Neurocrit Care. 2011;14(3):395–400.PubMedCrossRef
24.
go back to reference Inaji M, Tomita H, Tone O, Tamaki M, Suzuki R, Ohno K. Chronological changes of perihematomal edema of human intracerebral hematoma. Acta Neurochir Suppl. 2003;86:445–8.PubMed Inaji M, Tomita H, Tone O, Tamaki M, Suzuki R, Ohno K. Chronological changes of perihematomal edema of human intracerebral hematoma. Acta Neurochir Suppl. 2003;86:445–8.PubMed
25.
go back to reference Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. Stroke. 1999;30(6):1167–73.PubMedCrossRef Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. Stroke. 1999;30(6):1167–73.PubMedCrossRef
26.
go back to reference Venkatasubramanian C, Mlynash M, Finley-Caulfield A, Eyngorn I, Kalimuthu R, Snider RW, Wijman CA. Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke. 2011;42(1):73–80.PubMedCrossRef Venkatasubramanian C, Mlynash M, Finley-Caulfield A, Eyngorn I, Kalimuthu R, Snider RW, Wijman CA. Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke. 2011;42(1):73–80.PubMedCrossRef
27.
go back to reference Macdonald RL, Marton LS, Andrus PK, Hall ED, Johns L, Sajdak M. Time course of production of hydroxyl free radical after subarachnoid hemorrhage in dogs. Life Sci. 2004;75(8):979–89.PubMedCrossRef Macdonald RL, Marton LS, Andrus PK, Hall ED, Johns L, Sajdak M. Time course of production of hydroxyl free radical after subarachnoid hemorrhage in dogs. Life Sci. 2004;75(8):979–89.PubMedCrossRef
28.
go back to reference Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34(12):2964–9.PubMedCrossRef Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34(12):2964–9.PubMedCrossRef
29.
go back to reference Palesch Y, Tilley B, Sackett D, Johnston K, Woolson R. Applying a phase II futility study design to therapeutic stroke trials. Stroke. 2005;36:2410–4.PubMedCrossRef Palesch Y, Tilley B, Sackett D, Johnston K, Woolson R. Applying a phase II futility study design to therapeutic stroke trials. Stroke. 2005;36:2410–4.PubMedCrossRef
30.
go back to reference Forstmeier W, Schielzeth H. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav Ecol Sociobiol. 2011;65(1):47–55.PubMedCrossRef Forstmeier W, Schielzeth H. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav Ecol Sociobiol. 2011;65(1):47–55.PubMedCrossRef
31.
go back to reference Davis SM, Broderick J, Hennerici M, Brun NC, Diringer MN, Mayer SA, et al. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology. 2006;66(8):1175–81.PubMedCrossRef Davis SM, Broderick J, Hennerici M, Brun NC, Diringer MN, Mayer SA, et al. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology. 2006;66(8):1175–81.PubMedCrossRef
32.
go back to reference Russell MW, Joshi VA, Neumann PJ, Boulanger L, Menzin J. Predictors of hospital length of stay in patients with ICH. Neurology. 2006;67:1279–81.PubMedCrossRef Russell MW, Joshi VA, Neumann PJ, Boulanger L, Menzin J. Predictors of hospital length of stay in patients with ICH. Neurology. 2006;67:1279–81.PubMedCrossRef
33.
go back to reference Fisher M, Hanley DF, Howard G, Jauch EC. Warach S; STAIR Group. Recommendations from the STAIR V meeting on acute stroke trials, technology and outcomes. Stroke. 2007;38(2):245–8.PubMedCrossRef Fisher M, Hanley DF, Howard G, Jauch EC. Warach S; STAIR Group. Recommendations from the STAIR V meeting on acute stroke trials, technology and outcomes. Stroke. 2007;38(2):245–8.PubMedCrossRef
Metadata
Title
High Dose Deferoxamine in Intracerebral Hemorrhage (Hi-Def) Trial: Rationale, Design, and Methods
Authors
Sharon D. Yeatts
Yuko Y. Palesch
Claudia S. Moy
Magdy Selim
Publication date
01-10-2013
Publisher
Springer US
Published in
Neurocritical Care / Issue 2/2013
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-013-9861-y

Other articles of this Issue 2/2013

Neurocritical Care 2/2013 Go to the issue