Skip to main content
Top
Published in: Neurocritical Care 1/2009

01-02-2009 | Original Article

Development of a Pediatric Neurocritical Care Service

Authors: Michael J. Bell, Jessica Carpenter, Alicia K. Au, Robert F. Keating, John S. Myseros, Amanda Yaun, Steven Weinstein

Published in: Neurocritical Care | Issue 1/2009

Login to get access

Abstract

Objective

To describe the development of a Pediatric Neurocritical Care (PNCCM) service; define the patient population that requires the service and describe important outcome parameters.

Methods

An analysis of prospectively collected data from a database was performed in a tertiary-care, academic children’s hospital. Critically ill children who received a PNCCM consult between April, 2006 and May 2007 were included in the analysis. Demographic data (including age, Pediatric Intensive Care Unit (PICU) admission diagnosis, reason for PNCCM consult, timing of consult, and medical/neurological co-morbidities), outcome (PICU mortality and hospital length of stay) and result of consults (resources utilized, new consults or differential diagnoses suggested) were collected.

Results

Over a 14-month period, 373 PNCCM consults were obtained (total PICU admissions 1,423) at an average of 3.6 days ± 0.5 after PICU admission. PNCCM consults had a higher mortality than overall PICU population (11.0% vs. 5.2%; P < 0.001) and longer hospital length of stay (18.5 days ± 1.4 vs. 6.7 days ± 1.9). The majority (64.1%) of PNCCM consults were admitted to the PICU with neurological diagnoses (status epilepticus was the most common). A significant percentage (35.9%) had critical medical conditions at presentation and the disorders of our PNCCM consults were very different from those observed in adult NCCM services. PNCCM consults suggested an additional and differential diagnosis in 148 children and an additional 105 consults from other services. More than 787 procedures or diagnostic neurological tests were performed in this cohort of children in the PICU.

Conclusion

A PNCCM team was asked to assist in managing almost one-quarter of the total patient census in an urban, tertiary-care, teaching hospital. The number of consults is comparable to those observed in early studies in adult NCCM team development but the admission diagnoses are distinct. The PNCCM consulted on children with high mortality rates. Future studies will be needed to determine if the presence of a PNCCM can result in improved patient outcomes.
Literature
1.
2.
go back to reference Pollack MM, Katz RW, Ruttimann UE, Getson PR. Improving the outcome and efficiency of intensive care: the impact of an intensivist. Crit Care Med 1988;16:11–7.PubMed Pollack MM, Katz RW, Ruttimann UE, Getson PR. Improving the outcome and efficiency of intensive care: the impact of an intensivist. Crit Care Med 1988;16:11–7.PubMed
3.
go back to reference Effect of intravenous recombinant tissue plasminogen activator on ischemic stroke lesion size measured by computed tomography. NINDS; The National Institute of Neurological Disorders and Stroke (NINDS) rt-PA Stroke Study Group. Stroke 2000;31:2912–9. Effect of intravenous recombinant tissue plasminogen activator on ischemic stroke lesion size measured by computed tomography. NINDS; The National Institute of Neurological Disorders and Stroke (NINDS) rt-PA Stroke Study Group. Stroke 2000;31:2912–9.
4.
go back to reference Clark WM, Albers GW, Madden KP, Hamilton S. The rtPA (alteplase) 0- to 6-hour acute stroke trial, part A (A0276g): results of a double-blind, placebo-controlled, multicenter study. Thromblytic therapy in acute ischemic stroke study investigators. Stroke 2000;31:811–6.PubMed Clark WM, Albers GW, Madden KP, Hamilton S. The rtPA (alteplase) 0- to 6-hour acute stroke trial, part A (A0276g): results of a double-blind, placebo-controlled, multicenter study. Thromblytic therapy in acute ischemic stroke study investigators. Stroke 2000;31:811–6.PubMed
5.
go back to reference Hypothermia After Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002;346:549–56.CrossRef Hypothermia After Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002;346:549–56.CrossRef
6.
go back to reference Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002;346:557–63.PubMedCrossRef Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002;346:557–63.PubMedCrossRef
7.
go back to reference Mazzeo AT, Bullock R. Monitoring brain tissue oxymetry: will it change management of critically ill neurologic patients? J Neurol Sci 2007;261:1–9.PubMedCrossRef Mazzeo AT, Bullock R. Monitoring brain tissue oxymetry: will it change management of critically ill neurologic patients? J Neurol Sci 2007;261:1–9.PubMedCrossRef
8.
go back to reference Zauner A, Daugherty WP, Bullock MR, Warner DS. Brain oxygenation and energy metabolism: part I-biological function and pathophysiology. Neurosurgery 2002;51:289–301.PubMedCrossRef Zauner A, Daugherty WP, Bullock MR, Warner DS. Brain oxygenation and energy metabolism: part I-biological function and pathophysiology. Neurosurgery 2002;51:289–301.PubMedCrossRef
9.
go back to reference Bullock R, Zauner A, Woodward JJ, et al. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 1998;89:507–18.PubMedCrossRef Bullock R, Zauner A, Woodward JJ, et al. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 1998;89:507–18.PubMedCrossRef
10.
go back to reference Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS. Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma 2004;21:894–906.PubMedCrossRef Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS. Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma 2004;21:894–906.PubMedCrossRef
11.
go back to reference Hlatky R, Furuya Y, Valadka AB, Goodman JC, Robertson CS. Microdialysate nitrate/nitrite levels following severe head injury. Acta Neurochir Suppl 2002;81:331–3.PubMed Hlatky R, Furuya Y, Valadka AB, Goodman JC, Robertson CS. Microdialysate nitrate/nitrite levels following severe head injury. Acta Neurochir Suppl 2002;81:331–3.PubMed
12.
go back to reference Robertson CS, Gopinath SP, Goodman JC, Contant CF, Valadka AB, Narayan RK. SjvO2 monitoring in head-injured patients. J Neurotrauma 1995;12:891–6.PubMed Robertson CS, Gopinath SP, Goodman JC, Contant CF, Valadka AB, Narayan RK. SjvO2 monitoring in head-injured patients. J Neurotrauma 1995;12:891–6.PubMed
13.
go back to reference Mayer SA, Kowalski RG, Presciutti M, et al. Clinical trial of a novel surface cooling system for fever control in neurocritical care patients. Crit Care Med 2004;32:2508–15.PubMedCrossRef Mayer SA, Kowalski RG, Presciutti M, et al. Clinical trial of a novel surface cooling system for fever control in neurocritical care patients. Crit Care Med 2004;32:2508–15.PubMedCrossRef
14.
go back to reference Diringer MN. Treatment of fever in the neurologic intensive care unit with a catheter-based heat exchange system. Crit Care Med 2004;32:559–64.PubMedCrossRef Diringer MN. Treatment of fever in the neurologic intensive care unit with a catheter-based heat exchange system. Crit Care Med 2004;32:559–64.PubMedCrossRef
15.
go back to reference Fernandez A, Schmidt JM, Claassen J, et al. Fever after subarachnoid hemorrhage: risk factors and impact on outcome. Neurology 2007;68:1013–9.PubMedCrossRef Fernandez A, Schmidt JM, Claassen J, et al. Fever after subarachnoid hemorrhage: risk factors and impact on outcome. Neurology 2007;68:1013–9.PubMedCrossRef
16.
go back to reference Mayer SA. Refrigerated intravenous fluids: kick-starting the cooling process. Crit Care Med 2005;33:2844–5.PubMedCrossRef Mayer SA. Refrigerated intravenous fluids: kick-starting the cooling process. Crit Care Med 2005;33:2844–5.PubMedCrossRef
17.
go back to reference Bleck TP, Smith MC, Pierre-Louis SJ, Jares JJ, Murray J, Hansen CA. Neurologic complications of critical medical illnesses. Crit Care Med 1993;21:98–103.PubMedCrossRef Bleck TP, Smith MC, Pierre-Louis SJ, Jares JJ, Murray J, Hansen CA. Neurologic complications of critical medical illnesses. Crit Care Med 1993;21:98–103.PubMedCrossRef
18.
go back to reference Mirski MA, Chang CW, Cowan R. Impact of a neuroscience intensive care unit on neurosurgical patient outcomes and cost of care: evidence-based support for an intensivist-directed specialty ICU model of care. J Neurosurg Anesthesiol 2001;13:83–92.PubMedCrossRef Mirski MA, Chang CW, Cowan R. Impact of a neuroscience intensive care unit on neurosurgical patient outcomes and cost of care: evidence-based support for an intensivist-directed specialty ICU model of care. J Neurosurg Anesthesiol 2001;13:83–92.PubMedCrossRef
19.
go back to reference Patel HC, Menon DK, Tebbs S, Hawker R, Hutchinson PJ, Kirkpatrick PJ. Specialist neurocritical care and outcome from head injury. Intensive Care Med 2002;28:547–53.PubMedCrossRef Patel HC, Menon DK, Tebbs S, Hawker R, Hutchinson PJ, Kirkpatrick PJ. Specialist neurocritical care and outcome from head injury. Intensive Care Med 2002;28:547–53.PubMedCrossRef
20.
go back to reference Suarez JI, Zaidat OO, Suri MF, et al. Length of stay and mortality in neurocritically ill patients: impact of a specialized neurocritical care team. Crit Care Med 2004;32:2311–7.PubMed Suarez JI, Zaidat OO, Suri MF, et al. Length of stay and mortality in neurocritically ill patients: impact of a specialized neurocritical care team. Crit Care Med 2004;32:2311–7.PubMed
21.
go back to reference Varelas PN, Eastwood D, Yun HJ, et al. Impact of a neurointensivist on outcomes in patients with head trauma treated in a neurosciences intensive care unit. J Neurosurg 2006;104:713–9.PubMedCrossRef Varelas PN, Eastwood D, Yun HJ, et al. Impact of a neurointensivist on outcomes in patients with head trauma treated in a neurosciences intensive care unit. J Neurosurg 2006;104:713–9.PubMedCrossRef
22.
go back to reference Adelson PD, Bratton SL, Carney NA, et al. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents. Pediatr Crit Care Med 2003;4:S1–73.CrossRef Adelson PD, Bratton SL, Carney NA, et al. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents. Pediatr Crit Care Med 2003;4:S1–73.CrossRef
23.
go back to reference Rincon F, Mayer SA. Neurocritical care: a distinct discipline? Curr Opin Crit Care 2007;13:115–21.PubMedCrossRef Rincon F, Mayer SA. Neurocritical care: a distinct discipline? Curr Opin Crit Care 2007;13:115–21.PubMedCrossRef
24.
go back to reference Ropper A, Gress M, Green D, Mayer S, Bleck T. Neurological and neurosurgical intensive care. 4th ed. Philadelphia: Lippincott Williams and Wilkins; 2003. Ropper A, Gress M, Green D, Mayer S, Bleck T. Neurological and neurosurgical intensive care. 4th ed. Philadelphia: Lippincott Williams and Wilkins; 2003.
25.
go back to reference Diringer MN, Edwards DF. Admission to a neurologic/neurosurgical intensive care unit is associated with reduced mortality rate after intracerebral hemorrhage. Crit Care Med 2001;29:635–40.PubMedCrossRef Diringer MN, Edwards DF. Admission to a neurologic/neurosurgical intensive care unit is associated with reduced mortality rate after intracerebral hemorrhage. Crit Care Med 2001;29:635–40.PubMedCrossRef
26.
go back to reference Pollack MM, Patel KM, Ruttimann UE. The Pediatric Risk of Mortality III-Acute Physiology Score (PRISM III-APS): a method of assessing physiologic instability for pediatric intensive care unit patients. J Pediatr 1997;131:575–81.PubMedCrossRef Pollack MM, Patel KM, Ruttimann UE. The Pediatric Risk of Mortality III-Acute Physiology Score (PRISM III-APS): a method of assessing physiologic instability for pediatric intensive care unit patients. J Pediatr 1997;131:575–81.PubMedCrossRef
27.
go back to reference Chang AC. Pediatric cardiac intensive care: current state of the art and beyond the millennium. Curr Opin Pediatr 2000;12:238–46.PubMedCrossRef Chang AC. Pediatric cardiac intensive care: current state of the art and beyond the millennium. Curr Opin Pediatr 2000;12:238–46.PubMedCrossRef
28.
go back to reference Chang AC. How to start and sustain a successful pediatric cardiac intensive care program: a combined clinical and administrative strategy. Pediatr Crit Care Med 2002;3:107–11.PubMedCrossRef Chang AC. How to start and sustain a successful pediatric cardiac intensive care program: a combined clinical and administrative strategy. Pediatr Crit Care Med 2002;3:107–11.PubMedCrossRef
Metadata
Title
Development of a Pediatric Neurocritical Care Service
Authors
Michael J. Bell
Jessica Carpenter
Alicia K. Au
Robert F. Keating
John S. Myseros
Amanda Yaun
Steven Weinstein
Publication date
01-02-2009
Publisher
Humana Press Inc
Published in
Neurocritical Care / Issue 1/2009
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-008-9061-3

Other articles of this Issue 1/2009

Neurocritical Care 1/2009 Go to the issue