Skip to main content
Top
Published in: Forensic Science, Medicine and Pathology 4/2017

01-12-2017 | Original Article

Automatic detection of hemorrhagic pericardial effusion on PMCT using deep learning - a feasibility study

Authors: Lars C. Ebert, Jakob Heimer, Wolf Schweitzer, Till Sieberth, Anja Leipner, Michael Thali, Garyfalia Ampanozi

Published in: Forensic Science, Medicine and Pathology | Issue 4/2017

Login to get access

Abstract

Post mortem computed tomography (PMCT) can be used as a triage tool to better identify cases with a possibly non-natural cause of death, especially when high caseloads make it impossible to perform autopsies on all cases. Substantial data can be generated by modern medical scanners, especially in a forensic setting where the entire body is documented at high resolution. A solution for the resulting issues could be the use of deep learning techniques for automatic analysis of radiological images. In this article, we wanted to test the feasibility of such methods for forensic imaging by hypothesizing that deep learning methods can detect and segment a hemopericardium in PMCT. For deep learning image analysis software, we used the ViDi Suite 2.0. We retrospectively selected 28 cases with, and 24 cases without, hemopericardium. Based on these data, we trained two separate deep learning networks. The first one classified images into hemopericardium/not hemopericardium, and the second one segmented the blood content. We randomly selected 50% of the data for training and 50% for validation. This process was repeated 20 times. The best performing classification network classified all cases of hemopericardium from the validation images correctly with only a few false positives. The best performing segmentation network would tend to underestimate the amount of blood in the pericardium, which is the case for most networks. This is the first study that shows that deep learning has potential for automated image analysis of radiological images in forensic medicine.
Appendix
Available only for authorised users
Literature
1.
go back to reference O’Donnell C. An image of sudden death: utility of routine post-mortem computed tomography scanning in medico-legal autopsy practice. Diagn Histopathol. 2010;16:552–5.CrossRef O’Donnell C. An image of sudden death: utility of routine post-mortem computed tomography scanning in medico-legal autopsy practice. Diagn Histopathol. 2010;16:552–5.CrossRef
2.
go back to reference Flach PM, Gascho D, Schweitzer W, Ruder TD, Berger N, Ross SG, et al. Imaging in forensic radiology: an illustrated guide for postmortem computed tomography technique and protocols. Forensic Sci Med Pathol. 2014;10:583–606.CrossRefPubMed Flach PM, Gascho D, Schweitzer W, Ruder TD, Berger N, Ross SG, et al. Imaging in forensic radiology: an illustrated guide for postmortem computed tomography technique and protocols. Forensic Sci Med Pathol. 2014;10:583–606.CrossRefPubMed
3.
go back to reference Andriole KP, Wolfe JM, Khorasani R, Treves ST, Getty DJ, Jacobson FL, et al. Optimizing analysis, visualization, and navigation of large image data sets: one 5000-section CT scan can ruin your whole day. Radiology. 2011;259:346–62.CrossRefPubMed Andriole KP, Wolfe JM, Khorasani R, Treves ST, Getty DJ, Jacobson FL, et al. Optimizing analysis, visualization, and navigation of large image data sets: one 5000-section CT scan can ruin your whole day. Radiology. 2011;259:346–62.CrossRefPubMed
4.
go back to reference Christe A, Flach P, Ross S, Spendlove D, Bolliger S, Vock P, et al. Clinical radiology and postmortem imaging (Virtopsy) are not the same: specific and unspecific postmortem signs. Leg Med Tokyo Jpn. 2010;12:215–22.CrossRef Christe A, Flach P, Ross S, Spendlove D, Bolliger S, Vock P, et al. Clinical radiology and postmortem imaging (Virtopsy) are not the same: specific and unspecific postmortem signs. Leg Med Tokyo Jpn. 2010;12:215–22.CrossRef
6.
go back to reference Yegnanarayana B. Artificial neural networks. New Delhi: PHI Learning Pvt Ltd.; 2009. Yegnanarayana B. Artificial neural networks. New Delhi: PHI Learning Pvt Ltd.; 2009.
7.
8.
go back to reference Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.CrossRef Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.CrossRef
9.
go back to reference Widrow B, Lehr MA. Thirty years of adaptive neural networks: perceptron, Madaline, and backpropagation. Proc IEEE. 1990;78:1415–42.CrossRef Widrow B, Lehr MA. Thirty years of adaptive neural networks: perceptron, Madaline, and backpropagation. Proc IEEE. 1990;78:1415–42.CrossRef
10.
go back to reference LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, et al. Handwritten digit recognition with a back-propagation network. In: Touretzky DS, editor. Advances in neural information processing systems 2. Los Altos: Morgan-Kaufmann; 1990. p. 396–404. LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, et al. Handwritten digit recognition with a back-propagation network. In: Touretzky DS, editor. Advances in neural information processing systems 2. Los Altos: Morgan-Kaufmann; 1990. p. 396–404.
11.
go back to reference Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: Kremer SC, Kolen JF, editors. A field guide to dynamical recurrent neural networks. IEEE Press; 2001, pp. 1-15. Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: Kremer SC, Kolen JF, editors. A field guide to dynamical recurrent neural networks. IEEE Press; 2001, pp. 1-15.
12.
go back to reference Mittal S. A survey of techniques for approximate computing. ACM Comput Surv. 2016;48:1–33. Mittal S. A survey of techniques for approximate computing. ACM Comput Surv. 2016;48:1–33.
13.
go back to reference Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18:1527–54.CrossRefPubMed Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18:1527–54.CrossRefPubMed
14.
go back to reference Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2016;36:61–78.CrossRefPubMed Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2016;36:61–78.CrossRefPubMed
15.
go back to reference Bar Y, Diamant I, Wolf L, Greenspan H. Deep learning with non-medical training used for chest pathology identification. 2015 [cited 2017 Jan 4]. pp. 94140V–94140V–7. Available from:. doi: 10.1117/12.2083124 Bar Y, Diamant I, Wolf L, Greenspan H. Deep learning with non-medical training used for chest pathology identification. 2015 [cited 2017 Jan 4]. pp. 94140V–94140V–7. Available from:. doi: 10.​1117/​12.​2083124
16.
go back to reference Hu P, Wu F, Peng J, Liang P, Kong D. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys Med Biol. 2016;61:8676–98.CrossRefPubMed Hu P, Wu F, Peng J, Liang P, Kong D. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys Med Biol. 2016;61:8676–98.CrossRefPubMed
17.
go back to reference Miao S, Wang ZJ, Liao R. A CNN regression approach for real-time 2D/3D registration. IEEE Trans Med Imaging. 2016;35:1352–63.CrossRef Miao S, Wang ZJ, Liao R. A CNN regression approach for real-time 2D/3D registration. IEEE Trans Med Imaging. 2016;35:1352–63.CrossRef
18.
go back to reference Kallenberg M, Petersen K, Nielsen M, Ng AY, Diao P, Igel C, et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging. 2016;35:1322–31.CrossRefPubMed Kallenberg M, Petersen K, Nielsen M, Ng AY, Diao P, Igel C, et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging. 2016;35:1322–31.CrossRefPubMed
19.
go back to reference Yan Z, Zhan Y, Peng Z, Liao S, Shinagawa Y, Zhang S, et al. Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition. IEEE Trans Med Imaging. 2016;35:1332–43.CrossRef Yan Z, Zhan Y, Peng Z, Liao S, Shinagawa Y, Zhang S, et al. Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition. IEEE Trans Med Imaging. 2016;35:1332–43.CrossRef
20.
go back to reference Greenspan H, Ginneken B van, Summers RM. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 2016;35:1153–1159. Greenspan H, Ginneken B van, Summers RM. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 2016;35:1153–1159.
21.
go back to reference Filograna L, Laberke P, Ampanozi G, Schweitzer W, Thali MJ, Bonomo L. Role of post-mortem computed tomography (PMCT) in the assessment of the challenging diagnosis of pericardial tamponade as cause of death in cases with hemopericardium. Radiol Med (Torino). 2015;120:723–30.CrossRef Filograna L, Laberke P, Ampanozi G, Schweitzer W, Thali MJ, Bonomo L. Role of post-mortem computed tomography (PMCT) in the assessment of the challenging diagnosis of pericardial tamponade as cause of death in cases with hemopericardium. Radiol Med (Torino). 2015;120:723–30.CrossRef
22.
go back to reference Restrepo CS, Lemos DF, Lemos JA, Velasquez E, Diethelm L, Ovella TA, et al. Imaging findings in cardiac tamponade with emphasis on CT. Radiogr Rev Publ Radiol Soc N Am Inc. 2007;27:1595–610. Restrepo CS, Lemos DF, Lemos JA, Velasquez E, Diethelm L, Ovella TA, et al. Imaging findings in cardiac tamponade with emphasis on CT. Radiogr Rev Publ Radiol Soc N Am Inc. 2007;27:1595–610.
23.
go back to reference Holmes DR, Nishimura R, Fountain R, Turi ZG. Iatrogenic pericardial effusion and tamponade in the percutaneous intracardiac intervention era. J Am Coll Cardiol Intv. 2009;2:705–17.CrossRef Holmes DR, Nishimura R, Fountain R, Turi ZG. Iatrogenic pericardial effusion and tamponade in the percutaneous intracardiac intervention era. J Am Coll Cardiol Intv. 2009;2:705–17.CrossRef
25.
go back to reference Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A. Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Investig Radiol. 2017;52:434–40.CrossRef Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A. Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Investig Radiol. 2017;52:434–40.CrossRef
26.
go back to reference Ebert LC, Ampanozi G, Ruder TD, Hatch G, Thali MJ, Germerott T. CT based volume measurement and estimation in cases of pericardial effusion. J Forensic Legal Med. 2012;19:126–31.CrossRef Ebert LC, Ampanozi G, Ruder TD, Hatch G, Thali MJ, Germerott T. CT based volume measurement and estimation in cases of pericardial effusion. J Forensic Legal Med. 2012;19:126–31.CrossRef
27.
go back to reference Buckland M, Gey F. The relationship between recall and precision. J Am Soc Inf Sci. 1994;45:12–9.CrossRef Buckland M, Gey F. The relationship between recall and precision. J Am Soc Inf Sci. 1994;45:12–9.CrossRef
28.
go back to reference Chinchor N. MUC-4 evaluation metrics. Proc 4th Conf Message Underst [Internet]. Stroudsburg, PA: Association for Computational Linguistics; 1992 [cited 2017 Jul 24]. p. 22–29. doi: 10.3115/1072064.1072067 Chinchor N. MUC-4 evaluation metrics. Proc 4th Conf Message Underst [Internet]. Stroudsburg, PA: Association for Computational Linguistics; 1992 [cited 2017 Jul 24]. p. 22–29. doi: 10.​3115/​1072064.​1072067
29.
go back to reference Huang L, Xia W, Zhang B, Qiu B, Gao X. MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images. Comput Methods Prog Biomed. 2017;143:67–74.CrossRef Huang L, Xia W, Zhang B, Qiu B, Gao X. MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images. Comput Methods Prog Biomed. 2017;143:67–74.CrossRef
30.
go back to reference Gao XW, Hui R, Tian Z. Classification of CT brain images based on deep learning networks. Comput Methods Prog Biomed. 2017;138:49–56.CrossRef Gao XW, Hui R, Tian Z. Classification of CT brain images based on deep learning networks. Comput Methods Prog Biomed. 2017;138:49–56.CrossRef
31.
go back to reference Ruder TD, Thali Y, Schindera ST, Dalla Torre SA, Zech W-D, Thali MJ, et al. How reliable are Hounsfield-unit measurements in forensic radiology? Forensic Sci Int. 2012;220:219–23.CrossRefPubMed Ruder TD, Thali Y, Schindera ST, Dalla Torre SA, Zech W-D, Thali MJ, et al. How reliable are Hounsfield-unit measurements in forensic radiology? Forensic Sci Int. 2012;220:219–23.CrossRefPubMed
32.
go back to reference Schulze C, Hoppe H, Schweitzer W, Schwendener N, Grabherr S, Jackowski C. Rib fractures at postmortem computed tomography (PMCT) validated against the autopsy. Forensic Sci Int. 2013;233:90–8.CrossRefPubMed Schulze C, Hoppe H, Schweitzer W, Schwendener N, Grabherr S, Jackowski C. Rib fractures at postmortem computed tomography (PMCT) validated against the autopsy. Forensic Sci Int. 2013;233:90–8.CrossRefPubMed
33.
go back to reference Ampanozi G, Hatch GM, Ruder TD, Flach PM, Germerott T, Thali MJ, et al. Post-mortem virtual estimation of free abdominal blood volume. Eur J Radiol. 2012;81:2133–6.CrossRefPubMed Ampanozi G, Hatch GM, Ruder TD, Flach PM, Germerott T, Thali MJ, et al. Post-mortem virtual estimation of free abdominal blood volume. Eur J Radiol. 2012;81:2133–6.CrossRefPubMed
Metadata
Title
Automatic detection of hemorrhagic pericardial effusion on PMCT using deep learning - a feasibility study
Authors
Lars C. Ebert
Jakob Heimer
Wolf Schweitzer
Till Sieberth
Anja Leipner
Michael Thali
Garyfalia Ampanozi
Publication date
01-12-2017
Publisher
Springer US
Published in
Forensic Science, Medicine and Pathology / Issue 4/2017
Print ISSN: 1547-769X
Electronic ISSN: 1556-2891
DOI
https://doi.org/10.1007/s12024-017-9906-1

Other articles of this Issue 4/2017

Forensic Science, Medicine and Pathology 4/2017 Go to the issue

Forensic Forum

Body farms

Forensic Forum

Body farms