Skip to main content
Top
Published in: Forensic Science, Medicine and Pathology 2/2015

01-06-2015 | Original Article

The correlation of epicardial adipose tissue on postmortem CT with coronary artery stenosis as determined by autopsy

Authors: Damien I. Sequeira, Lars C. Ebert, Patricia M. Flach, Thomas D. Ruder, Michael J. Thali, Garyfalia Ampanozi

Published in: Forensic Science, Medicine and Pathology | Issue 2/2015

Login to get access

Abstract

The goal of this study was to assess whether epicardial and paracardial adipose tissue volumes, as determined by computed tomography (CT), correlate with coronary artery stenosis as determined by autopsy. The postmortem CT data and autopsy findings of 116 adult human decedents were retrospectively compared. Subjects were classified into three groups according to their degree of coronary artery stenosis: ≥50, <50 %, and no stenosis. Epicardial and paracardial adipose tissue volumes were calculated based on manual segmentation after threshold based masking. In addition, epicardial adipose tissue thickness was measured using a caliper. All three parameters (thickness of epicardial fat and volumes of both epicardial and paracardial fat) were compared among the three groups and correlated with the degree of coronary artery stenosis. The group with no coronary artery stenosis showed the lowest mean values of epicardial adipose tissue volume, while the coronary artery stenosis ≥50 % group showed the highest volume. All measured variables (thickness of epicardial fat and volumes of both epicardial and paracardial fat) correlated significantly with the grade of coronary artery stenosis, even after controlling for BMI, however, epicardial adipose tissue volume exhibited the strongest correlation. This study reveals that there is an association between the degree of coronary artery stenosis and the amount of epicardial fat tissue: The larger the volume of epicardial fat, the higher the degree of coronary artery stenosis.
Literature
1.
go back to reference Iacobellis G, Malavazos AE. Pericardial adipose tissue, atherosclerosis, and cardiovascular disease risk factors: the Jackson heart study. Comment on Liu et al. Diabetes Care. 2010;33(9):e127. Iacobellis G, Malavazos AE. Pericardial adipose tissue, atherosclerosis, and cardiovascular disease risk factors: the Jackson heart study. Comment on Liu et al. Diabetes Care. 2010;33(9):e127.
2.
3.
go back to reference Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2(10):536–43.CrossRefPubMed Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2(10):536–43.CrossRefPubMed
4.
go back to reference Rabkin SW. Epicardial fat: properties, function and relationship to obesity. Obes Rev. 2007;8(3):253–61.CrossRefPubMed Rabkin SW. Epicardial fat: properties, function and relationship to obesity. Obes Rev. 2007;8(3):253–61.CrossRefPubMed
5.
go back to reference Rumberger JA. Using noncontrast cardiac CT and coronary artery calcification measurements for cardiovascular risk assessment and management in asymptomatic adults. Vasc Health Risk Manag. 2010;6:579–91.CrossRefPubMedCentralPubMed Rumberger JA. Using noncontrast cardiac CT and coronary artery calcification measurements for cardiovascular risk assessment and management in asymptomatic adults. Vasc Health Risk Manag. 2010;6:579–91.CrossRefPubMedCentralPubMed
6.
go back to reference Park MJ, Jung JI, Oh YS, Youn HJ. Assessment of epicardial fat volume with threshold-based 3-dimensional segmentation in CT: comparison with the 2-dimensional short axis-based method. Korean Circ J. 2010;40(7):328–33.CrossRefPubMedCentralPubMed Park MJ, Jung JI, Oh YS, Youn HJ. Assessment of epicardial fat volume with threshold-based 3-dimensional segmentation in CT: comparison with the 2-dimensional short axis-based method. Korean Circ J. 2010;40(7):328–33.CrossRefPubMedCentralPubMed
7.
go back to reference Dey D, Suzuki Y, Suzuki S, Ohba M, Slomka PJ, Polk D, Shaw LJ, Berman DS. Automated quantitation of pericardiac fat from noncontrast CT. Invest Radiol. 2008;43(2):145–53.CrossRefPubMed Dey D, Suzuki Y, Suzuki S, Ohba M, Slomka PJ, Polk D, Shaw LJ, Berman DS. Automated quantitation of pericardiac fat from noncontrast CT. Invest Radiol. 2008;43(2):145–53.CrossRefPubMed
8.
go back to reference Sarin S, Wenger C, Marwaha A, Qureshi A, Go BD, Woomert CA, Clark K, Nassef LA, Shirani J. Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am J Cardiol. 2008;102(6):767–71.CrossRefPubMed Sarin S, Wenger C, Marwaha A, Qureshi A, Go BD, Woomert CA, Clark K, Nassef LA, Shirani J. Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am J Cardiol. 2008;102(6):767–71.CrossRefPubMed
9.
go back to reference Dey D, Wong ND, Tamarappoo B, Nakazato R, Gransar H, Cheng VY, Ramesh A, Kakadiaris I, Germano G, Slomka PJ, Berman DS. Computer-aided non-contrast CT-based quantification of pericardial and thoracic fat and their associations with coronary calcium and metabolic syndrome. Atherosclerosis. 2010;209(1):136–41.CrossRefPubMedCentralPubMed Dey D, Wong ND, Tamarappoo B, Nakazato R, Gransar H, Cheng VY, Ramesh A, Kakadiaris I, Germano G, Slomka PJ, Berman DS. Computer-aided non-contrast CT-based quantification of pericardial and thoracic fat and their associations with coronary calcium and metabolic syndrome. Atherosclerosis. 2010;209(1):136–41.CrossRefPubMedCentralPubMed
10.
go back to reference Nakazato R, Shmilovich H, Tamarappoo BK, Cheng VY, Slomka PJ, Berman DS, Dey D. Interscan reproducibility of computer-aided epicardial and thoracic fat measurement from noncontrast cardiac CT. J Cardiovasc Comput Tomogr. 2011;5(3):172–9.CrossRefPubMedCentralPubMed Nakazato R, Shmilovich H, Tamarappoo BK, Cheng VY, Slomka PJ, Berman DS, Dey D. Interscan reproducibility of computer-aided epicardial and thoracic fat measurement from noncontrast cardiac CT. J Cardiovasc Comput Tomogr. 2011;5(3):172–9.CrossRefPubMedCentralPubMed
11.
go back to reference Eroglu S, Sade LE, Yildirir A, Bal U, Ozbicer S, Ozgul AS, Bozbas H, Aydinalp A, Muderrisoglu H. Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr Metab Cardiovasc Dis. 2009;19(3):211–7.CrossRefPubMed Eroglu S, Sade LE, Yildirir A, Bal U, Ozbicer S, Ozgul AS, Bozbas H, Aydinalp A, Muderrisoglu H. Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr Metab Cardiovasc Dis. 2009;19(3):211–7.CrossRefPubMed
12.
go back to reference Wang TD, Lee WJ, Shih FY, Huang CH, Chen WJ, Lee YT, Shih TT, Chen MF. Association of epicardial adipose tissue with coronary atherosclerosis is region-specific and independent of conventional risk factors and intra-abdominal adiposity. Atherosclerosis. 2010;213(1):279–87.CrossRefPubMed Wang TD, Lee WJ, Shih FY, Huang CH, Chen WJ, Lee YT, Shih TT, Chen MF. Association of epicardial adipose tissue with coronary atherosclerosis is region-specific and independent of conventional risk factors and intra-abdominal adiposity. Atherosclerosis. 2010;213(1):279–87.CrossRefPubMed
13.
go back to reference Bachar GN, Dicker D, Kornowski R, Atar E. Epicardial adipose tissue as a predictor of coronary artery disease in asymptomatic subjects. Am J Cardiol. 2012;110(4):534–8.CrossRefPubMed Bachar GN, Dicker D, Kornowski R, Atar E. Epicardial adipose tissue as a predictor of coronary artery disease in asymptomatic subjects. Am J Cardiol. 2012;110(4):534–8.CrossRefPubMed
14.
go back to reference Schlett CL, Ferencik M, Kriegel MF, Bamberg F, Ghoshhajra BB, Joshi SB, Nagurney JT, Fox CS, Truong QA, Hoffmann U. Association of pericardial fat and coronary high-risk lesions as determined by cardiac CT. Atherosclerosis. 2012;222(1):129–34.CrossRefPubMedCentralPubMed Schlett CL, Ferencik M, Kriegel MF, Bamberg F, Ghoshhajra BB, Joshi SB, Nagurney JT, Fox CS, Truong QA, Hoffmann U. Association of pericardial fat and coronary high-risk lesions as determined by cardiac CT. Atherosclerosis. 2012;222(1):129–34.CrossRefPubMedCentralPubMed
15.
go back to reference Xu Y, Cheng X, Hong K, Huang C, Wan L. How to interpret epicardial adipose tissue as a cause of coronary artery disease: a meta-analysis. Coron Artery Dis. 2012;23(4):227–33.CrossRefPubMed Xu Y, Cheng X, Hong K, Huang C, Wan L. How to interpret epicardial adipose tissue as a cause of coronary artery disease: a meta-analysis. Coron Artery Dis. 2012;23(4):227–33.CrossRefPubMed
16.
go back to reference Kim TH, Yu SH, Choi SH, Yoon JW, Kang SM, Chun EJ, et al. Pericardial fat amount is an independent risk factor of coronary artery stenosis assessed by multidetector-row computed tomography: the Korean atherosclerosis study 2. Obesity (Silver Spring). 2011;19(5):1028–34.CrossRefPubMed Kim TH, Yu SH, Choi SH, Yoon JW, Kang SM, Chun EJ, et al. Pericardial fat amount is an independent risk factor of coronary artery stenosis assessed by multidetector-row computed tomography: the Korean atherosclerosis study 2. Obesity (Silver Spring). 2011;19(5):1028–34.CrossRefPubMed
17.
go back to reference Rajani R, Shmilovich H, Nakazato R, Nakanishi R, Otaki Y, Cheng VY, et al. Relationship of epicardial fat volume to coronary plaque, severe coronary stenosis, and high-risk coronary plaque features assessed by coronary CT angiography. J Cardiovasc Comput Tomogr. 2013;7(2):125–32.CrossRefPubMedCentralPubMed Rajani R, Shmilovich H, Nakazato R, Nakanishi R, Otaki Y, Cheng VY, et al. Relationship of epicardial fat volume to coronary plaque, severe coronary stenosis, and high-risk coronary plaque features assessed by coronary CT angiography. J Cardiovasc Comput Tomogr. 2013;7(2):125–32.CrossRefPubMedCentralPubMed
18.
go back to reference Ito T, Nasu K, Terashima M, Ehara M, Kinoshita Y, Ito T, et al. The impact of epicardial fat volume on coronary plaque vulnerability: insight from optical coherence tomography analysis. Eur Heart J Cardiovasc Imaging. 2012;13(5):408–15.CrossRefPubMed Ito T, Nasu K, Terashima M, Ehara M, Kinoshita Y, Ito T, et al. The impact of epicardial fat volume on coronary plaque vulnerability: insight from optical coherence tomography analysis. Eur Heart J Cardiovasc Imaging. 2012;13(5):408–15.CrossRefPubMed
19.
go back to reference Alexopoulos N, McLean DS, Janik M, Arepalli CD, Stillman AE, Raggi P. Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis. 2010;210(1):150–4.CrossRefPubMed Alexopoulos N, McLean DS, Janik M, Arepalli CD, Stillman AE, Raggi P. Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis. 2010;210(1):150–4.CrossRefPubMed
20.
go back to reference Ding J, Kritchevsky SB, Harris TB, Burke GL, Detrano RC, Szklo M, Jeffrey Carr J. Multi-ethnic study of atherosclerosis. The association of pericardial fat with calcified coronary plaque. Obesity (Silver Spring). 2008;16(8):1914–9. Ding J, Kritchevsky SB, Harris TB, Burke GL, Detrano RC, Szklo M, Jeffrey Carr J. Multi-ethnic study of atherosclerosis. The association of pericardial fat with calcified coronary plaque. Obesity (Silver Spring). 2008;16(8):1914–9.
21.
go back to reference Iwasaki K, Matsumoto T, Aono H, Furukawa H, Samukawa M. Relationship between epicardial fat measured by 64-multidetector computed tomography and coronary artery disease. Clin Cardiol. 2011;34(3):166–71.CrossRefPubMed Iwasaki K, Matsumoto T, Aono H, Furukawa H, Samukawa M. Relationship between epicardial fat measured by 64-multidetector computed tomography and coronary artery disease. Clin Cardiol. 2011;34(3):166–71.CrossRefPubMed
22.
go back to reference Liu J, Fox CS, Hickson D, Sarpong D, Ekunwe L, May WD, Hundley GW, Carr JJ, Taylor HA. Pericardial adipose tissue, atherosclerosis, and cardiovascular disease risk factors: the Jackson heart study. Diabetes Care. 2010;33(7):1635–9.CrossRefPubMedCentralPubMed Liu J, Fox CS, Hickson D, Sarpong D, Ekunwe L, May WD, Hundley GW, Carr JJ, Taylor HA. Pericardial adipose tissue, atherosclerosis, and cardiovascular disease risk factors: the Jackson heart study. Diabetes Care. 2010;33(7):1635–9.CrossRefPubMedCentralPubMed
23.
go back to reference Baglivo M, Winklhofer S, Hatch GM, Ampanozi G, Thali MJ, Ruder TD. The rise of forensic and post-mortem radiology—analysis of the literature between the year 2000 and 2011. J. Forensic Radiol Imaging. 2013;1:3–9.CrossRef Baglivo M, Winklhofer S, Hatch GM, Ampanozi G, Thali MJ, Ruder TD. The rise of forensic and post-mortem radiology—analysis of the literature between the year 2000 and 2011. J. Forensic Radiol Imaging. 2013;1:3–9.CrossRef
24.
go back to reference Thali MJ, Yen K, Schweitzer W, Vock P, Boesch C, Ozdoba C, et al. Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)-a feasibility study. J Forensic Sci. 2003;48(2):386–403.PubMed Thali MJ, Yen K, Schweitzer W, Vock P, Boesch C, Ozdoba C, et al. Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)-a feasibility study. J Forensic Sci. 2003;48(2):386–403.PubMed
25.
go back to reference Weustink AC, Hunink MGM, Van Dijke CF, Renken NS, Krestin GP, Oosterhuis JW. Minimally invasive autopsy: an alternative to conventional autopsy? Radiology. 2009;250(3):897–904.CrossRefPubMed Weustink AC, Hunink MGM, Van Dijke CF, Renken NS, Krestin GP, Oosterhuis JW. Minimally invasive autopsy: an alternative to conventional autopsy? Radiology. 2009;250(3):897–904.CrossRefPubMed
26.
go back to reference Ebert LC, Ampanozi G, Ruder TD, Hatch G, Thali MJ, Germerott T. CT based volume measurement and estimation in cases of pericardial effusion. J Forensic Leg Med. 2012;19(3):126–31.CrossRefPubMed Ebert LC, Ampanozi G, Ruder TD, Hatch G, Thali MJ, Germerott T. CT based volume measurement and estimation in cases of pericardial effusion. J Forensic Leg Med. 2012;19(3):126–31.CrossRefPubMed
27.
go back to reference Ampanozi G, Hatch GM, Ruder TD, Flach PM, Germerott T, Thali MJ, Ebert LC. Post-mortem virtual estimation of free abdominal blood volume. Eur J Radiol. 2012;81(9):2133–6.CrossRefPubMed Ampanozi G, Hatch GM, Ruder TD, Flach PM, Germerott T, Thali MJ, Ebert LC. Post-mortem virtual estimation of free abdominal blood volume. Eur J Radiol. 2012;81(9):2133–6.CrossRefPubMed
28.
go back to reference Leth PM. Computerized tomography used as a routine procedure at postmortem investigations. Am J Forensic Med Pathol. 2009;30(3):219–22.CrossRefPubMed Leth PM. Computerized tomography used as a routine procedure at postmortem investigations. Am J Forensic Med Pathol. 2009;30(3):219–22.CrossRefPubMed
29.
go back to reference Thayyil S, Sebire NJ, Chitty LS, Wade A, Chong W, Olsen O, et al. Post-mortem MRI versus conventional autopsy in fetuses and children: a prospective validation study. Lancet. 2013;382(9888):223–33.CrossRefPubMed Thayyil S, Sebire NJ, Chitty LS, Wade A, Chong W, Olsen O, et al. Post-mortem MRI versus conventional autopsy in fetuses and children: a prospective validation study. Lancet. 2013;382(9888):223–33.CrossRefPubMed
30.
go back to reference Roberts IS, Benamore RE, Benbow EW, Lee SH, Harris JN, Jackson A, et al. Post-mortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. Lancet. 2012;379(9811):136–42.CrossRefPubMedCentralPubMed Roberts IS, Benamore RE, Benbow EW, Lee SH, Harris JN, Jackson A, et al. Post-mortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. Lancet. 2012;379(9811):136–42.CrossRefPubMedCentralPubMed
31.
go back to reference Levy AD, Harcke HT, Mallak CT. Postmortem imaging: MDCT features of postmortem change and decomposition. Am J Forensic Med Pathol. 2010;31:12–7.CrossRefPubMed Levy AD, Harcke HT, Mallak CT. Postmortem imaging: MDCT features of postmortem change and decomposition. Am J Forensic Med Pathol. 2010;31:12–7.CrossRefPubMed
32.
go back to reference Flach PM, Gascho D, Schweitzer W, Ruder TD, Berger N, Ross SG, Thali MJ, Ampanozi G. Imaging in forensic radiology: an illustrated guide for postmortem computed tomography technique and protocols. Forensic Sci Med Pathol. 2014;10(4):583–606.CrossRefPubMed Flach PM, Gascho D, Schweitzer W, Ruder TD, Berger N, Ross SG, Thali MJ, Ampanozi G. Imaging in forensic radiology: an illustrated guide for postmortem computed tomography technique and protocols. Forensic Sci Med Pathol. 2014;10(4):583–606.CrossRefPubMed
33.
go back to reference Barbosa JG, Figueiredo B, Bettencourt N, Tavares JM. Towards automatic quantification of the epicardial fat in non-contrasted CT images. Comput Methods Biomech Biomed Engin. 2011;14(10):905–14.CrossRefPubMed Barbosa JG, Figueiredo B, Bettencourt N, Tavares JM. Towards automatic quantification of the epicardial fat in non-contrasted CT images. Comput Methods Biomech Biomed Engin. 2011;14(10):905–14.CrossRefPubMed
34.
go back to reference Wheeler GL, Shi R, Beck SR, Langefeld CD, Lenchik L, Wagenknecht LE, et al. Pericardial and visceral adipose tissues measured volumetrically with computed tomography are highly associated in type 2 diabetic families. Invest Radiol. 2005;40(2):97–101.CrossRefPubMed Wheeler GL, Shi R, Beck SR, Langefeld CD, Lenchik L, Wagenknecht LE, et al. Pericardial and visceral adipose tissues measured volumetrically with computed tomography are highly associated in type 2 diabetic families. Invest Radiol. 2005;40(2):97–101.CrossRefPubMed
35.
go back to reference Taguchi R, Takasu J, Itani Y, Yamamoto R, Yokoyama K, Watanabe S, Masuda Y. Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis. 2001;157:203–9.CrossRefPubMed Taguchi R, Takasu J, Itani Y, Yamamoto R, Yokoyama K, Watanabe S, Masuda Y. Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis. 2001;157:203–9.CrossRefPubMed
Metadata
Title
The correlation of epicardial adipose tissue on postmortem CT with coronary artery stenosis as determined by autopsy
Authors
Damien I. Sequeira
Lars C. Ebert
Patricia M. Flach
Thomas D. Ruder
Michael J. Thali
Garyfalia Ampanozi
Publication date
01-06-2015
Publisher
Springer US
Published in
Forensic Science, Medicine and Pathology / Issue 2/2015
Print ISSN: 1547-769X
Electronic ISSN: 1556-2891
DOI
https://doi.org/10.1007/s12024-015-9659-7

Other articles of this Issue 2/2015

Forensic Science, Medicine and Pathology 2/2015 Go to the issue

Lessons from the Museum

A fatal lion attack