Skip to main content
Top
Published in: NeuroMolecular Medicine 1/2018

Open Access 01-03-2018 | Original Paper

Correction of Huntington’s Disease Phenotype by Genistein-Induced Autophagy in the Cellular Model

Authors: Karolina Pierzynowska, Lidia Gaffke, Aleksandra Hać, Jagoda Mantej, Natalia Niedziałek, Joanna Brokowska, Grzegorz Węgrzyn

Published in: NeuroMolecular Medicine | Issue 1/2018

Login to get access

Abstract

Huntington’s disease (HD) is a monogenic disorder, caused by mutations in the HTT gene which result in expansion of CAG triplets. The product of the mutated gene is misfolded huntingtin protein that forms aggregates leading to impairment of neuronal function, neurodegeneration, motor abnormalities and cognitive deficits. No effective cure is currently available for HD. Here we studied effects of genistein (trihydroxyisoflavone) on a HD cellular model consisting of HEK-293 cells transfected with a plasmid bearing mutated HTT gene. Both level of mutated huntingtin and number of aggregates were significantly decreased in genistein-treated HD cell model. This led to increased viability of the cells. Autophagy was up-regulated while inhibition of lysosomal functions by chloroquine impaired the genistein-mediated degradation of the mutated huntingtin aggregates. Hence, we conclude that through stimulating autophagy, genistein removes the major pathogenic factor of HD. Prolonged induction of autophagy was suspected previously to be risky for patients due to putative adverse effects; however, genistein has been demonstrated recently to be safe and suitable for long-term therapies even at doses as high as 150 mg/kg/day. Therefore, results presented in this report provide a basis for the use of genistein in further studies on development of the potential treatment of HD.
Literature
go back to reference Aronin, N., & DiFiglia, M. (2014). Huntingtin-lowering strategies in Huntington’s disease: Antisense oligonucleotides, small RNAs, and gene editing. Movement Disorders, 29, 1455–1461.CrossRefPubMed Aronin, N., & DiFiglia, M. (2014). Huntingtin-lowering strategies in Huntington’s disease: Antisense oligonucleotides, small RNAs, and gene editing. Movement Disorders, 29, 1455–1461.CrossRefPubMed
go back to reference Bañez-Coronel, M., Ayhan, F., Tarabochia, A. D., Zu, T., Perez, B. A., Tusi, S. K., et al. (2015). RAN translation in Huntington disease. Neuron, 88, 667–677.CrossRefPubMedPubMedCentral Bañez-Coronel, M., Ayhan, F., Tarabochia, A. D., Zu, T., Perez, B. A., Tusi, S. K., et al. (2015). RAN translation in Huntington disease. Neuron, 88, 667–677.CrossRefPubMedPubMedCentral
go back to reference Bennett, E. J., Shaler, T. A., Woodman, B., Ryu, K. Y., Zaitseva, T. S., Becker, C. H., et al. (2007). Global changes to the ubiquitin system in Huntington’s disease. Nature, 448, 704–708.CrossRefPubMed Bennett, E. J., Shaler, T. A., Woodman, B., Ryu, K. Y., Zaitseva, T. S., Becker, C. H., et al. (2007). Global changes to the ubiquitin system in Huntington’s disease. Nature, 448, 704–708.CrossRefPubMed
go back to reference Bhutani, N., Venkatraman, P., & Goldberg, A. L. (2007). Puromycin-sensitive aminopeptidase is the major peptidase responsible for digesting polyglutamine sequences released by proteasomes during protein degradation. EMBO Journal, 26, 1385–1396.CrossRefPubMedPubMedCentral Bhutani, N., Venkatraman, P., & Goldberg, A. L. (2007). Puromycin-sensitive aminopeptidase is the major peptidase responsible for digesting polyglutamine sequences released by proteasomes during protein degradation. EMBO Journal, 26, 1385–1396.CrossRefPubMedPubMedCentral
go back to reference de Ruijter, J., Valstar, M. J., Narajczyk, M., Wegrzyn, G., Kulik, W., Ijlst, L., et al. (2012). Genistein in Sanfilippo disease: A randomized controlled crossover trial. Annals of Neurology, 71, 110–120.CrossRefPubMed de Ruijter, J., Valstar, M. J., Narajczyk, M., Wegrzyn, G., Kulik, W., Ijlst, L., et al. (2012). Genistein in Sanfilippo disease: A randomized controlled crossover trial. Annals of Neurology, 71, 110–120.CrossRefPubMed
go back to reference Galka-Marciniak, P., Urbanek, M. O., & Krzyzosiak, W. J. (2012). Triplet repeats in transcripts: Structural insights into RNA toxicity. Biological Chemistry, 393, 1299–1315.CrossRefPubMed Galka-Marciniak, P., Urbanek, M. O., & Krzyzosiak, W. J. (2012). Triplet repeats in transcripts: Structural insights into RNA toxicity. Biological Chemistry, 393, 1299–1315.CrossRefPubMed
go back to reference Gil, J. M., & Rego, A. C. (2008). Mechanisms of neurodegeneration on Huntington’s disease. European Journal of Neuroscience, 27, 2803–2820.CrossRefPubMed Gil, J. M., & Rego, A. C. (2008). Mechanisms of neurodegeneration on Huntington’s disease. European Journal of Neuroscience, 27, 2803–2820.CrossRefPubMed
go back to reference Goloubinoff, P. (2016). Mechanisms of protein homeostasis in health, aging and disease. Swiss Medical Weekly, 146, w14306.PubMed Goloubinoff, P. (2016). Mechanisms of protein homeostasis in health, aging and disease. Swiss Medical Weekly, 146, w14306.PubMed
go back to reference Gros, F., & Muller, S. (2014). Pharmacological regulators of autophagy and their link with modulators of lupus disease. British Journal of Pharmacology, 171, 4337–4359.CrossRefPubMedPubMedCentral Gros, F., & Muller, S. (2014). Pharmacological regulators of autophagy and their link with modulators of lupus disease. British Journal of Pharmacology, 171, 4337–4359.CrossRefPubMedPubMedCentral
go back to reference Haas, L. T., Kostylev, M. A., & Strittmatter, S. M. (2014). Therapeutic molecules and endogenous ligands regulate the interaction between brain cellular prion protein (PrPC) and metabotropic glutamate receptor 5 (mGluR5). Journal of Biological Chemistry, 289, 22477–28460.CrossRef Haas, L. T., Kostylev, M. A., & Strittmatter, S. M. (2014). Therapeutic molecules and endogenous ligands regulate the interaction between brain cellular prion protein (PrPC) and metabotropic glutamate receptor 5 (mGluR5). Journal of Biological Chemistry, 289, 22477–28460.CrossRef
go back to reference Jakóbkiewicz-Banecka, J., Piotrowska, E., Narajczyk, M., Barańska, S., & Wegrzyn, G. (2009). Genistein-mediated inhibition of glycosaminoglycan synthesis, which corrects storage in cells of patients suffering from mucopolysaccharidoses, acts by influencing an epidermal growth factor-dependent pathway. Journal of Biomedical Science, 16, 26.CrossRefPubMedPubMedCentral Jakóbkiewicz-Banecka, J., Piotrowska, E., Narajczyk, M., Barańska, S., & Wegrzyn, G. (2009). Genistein-mediated inhibition of glycosaminoglycan synthesis, which corrects storage in cells of patients suffering from mucopolysaccharidoses, acts by influencing an epidermal growth factor-dependent pathway. Journal of Biomedical Science, 16, 26.CrossRefPubMedPubMedCentral
go back to reference Jana, N. R., Zemskov, E. A., Wang, G., & Nukina, N. (2001). Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Human Molecular Genetics, 10, 1049–1059.CrossRefPubMed Jana, N. R., Zemskov, E. A., Wang, G., & Nukina, N. (2001). Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Human Molecular Genetics, 10, 1049–1059.CrossRefPubMed
go back to reference Kim, K. H., Dodsworth, C., Paras, A., & Burton, B. K. (2013). High dose genistein aglycone therapy is safe in patients with mucopolysaccharidoses involving the central nervous system. Molecular Genetics and Metabolism, 109, 382–385.CrossRefPubMed Kim, K. H., Dodsworth, C., Paras, A., & Burton, B. K. (2013). High dose genistein aglycone therapy is safe in patients with mucopolysaccharidoses involving the central nervous system. Molecular Genetics and Metabolism, 109, 382–385.CrossRefPubMed
go back to reference Lecca, D., Nevin, D. K., Mulas, G., Casu, M. A., Diana, A., Rossi, D., et al. (2015). Neuroprotective and anti-inflammatory properties of a novel non-thiazolidinedione PPARγ agonist in vitro and in MPTP-treated mice. Neuroscience, 302, 23–35.CrossRefPubMed Lecca, D., Nevin, D. K., Mulas, G., Casu, M. A., Diana, A., Rossi, D., et al. (2015). Neuroprotective and anti-inflammatory properties of a novel non-thiazolidinedione PPARγ agonist in vitro and in MPTP-treated mice. Neuroscience, 302, 23–35.CrossRefPubMed
go back to reference Malinowska, M., Wilkinson, F. L., Bennett, W., Langford-Smith, K. J., O’Leary, H. A., Jakobkiewicz-Banecka, J., et al. (2009). Genistein reduces lysosomal storage in peripheral tissues of mucopolysaccharide IIIB mice. Molecular Genetics and Metabolism, 98, 235–242.CrossRefPubMed Malinowska, M., Wilkinson, F. L., Bennett, W., Langford-Smith, K. J., O’Leary, H. A., Jakobkiewicz-Banecka, J., et al. (2009). Genistein reduces lysosomal storage in peripheral tissues of mucopolysaccharide IIIB mice. Molecular Genetics and Metabolism, 98, 235–242.CrossRefPubMed
go back to reference Malinowska, M., Wilkinson, F. L., Langford-Smith, K. J., Langford-Smith, A., Brown, J. R., Crawford, B. E., et al. (2010). Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease. PLoS ONE, 5, e14192.CrossRefPubMedPubMedCentral Malinowska, M., Wilkinson, F. L., Langford-Smith, K. J., Langford-Smith, A., Brown, J. R., Crawford, B. E., et al. (2010). Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease. PLoS ONE, 5, e14192.CrossRefPubMedPubMedCentral
go back to reference Menze, E. T., Esmat, A., Tadros, M. G., Abdel-Naim, A. B., & Khalifa, A. E. (2015). Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: Impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties. PLoS ONE, 10, e0117223.CrossRefPubMedPubMedCentral Menze, E. T., Esmat, A., Tadros, M. G., Abdel-Naim, A. B., & Khalifa, A. E. (2015). Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: Impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties. PLoS ONE, 10, e0117223.CrossRefPubMedPubMedCentral
go back to reference Menze, E. T., Esmat, A., Tadros, M. G., Khalifa, A. E., & Abdel-Naim, A. B. (2016). Genistein improves sensorimotor gating: Mechanisms related to its neuroprotective effects on the striatum. Neuropharmacology, 105, 35–46.CrossRefPubMed Menze, E. T., Esmat, A., Tadros, M. G., Khalifa, A. E., & Abdel-Naim, A. B. (2016). Genistein improves sensorimotor gating: Mechanisms related to its neuroprotective effects on the striatum. Neuropharmacology, 105, 35–46.CrossRefPubMed
go back to reference Morreale, M. K. (2015). Huntington’s disease: Looking beyond the movement disorder. Advances in Psychosomatic Medicine, 34, 135–142.CrossRefPubMed Morreale, M. K. (2015). Huntington’s disease: Looking beyond the movement disorder. Advances in Psychosomatic Medicine, 34, 135–142.CrossRefPubMed
go back to reference Moskot, M., Jakóbkiewicz-Banecka, J., Kloska, A., Smolińska, E., Mozolewski, P., Malinowska, M., et al. (2015a). Modulation of expression of genes involved in glycosaminoglycan metabolism and lysosome biogenesis by flavonoids. Sci Rep, 5, 9378.CrossRefPubMedPubMedCentral Moskot, M., Jakóbkiewicz-Banecka, J., Kloska, A., Smolińska, E., Mozolewski, P., Malinowska, M., et al. (2015a). Modulation of expression of genes involved in glycosaminoglycan metabolism and lysosome biogenesis by flavonoids. Sci Rep, 5, 9378.CrossRefPubMedPubMedCentral
go back to reference Moskot, M., Jakóbkiewicz-Banecka, J., Smolińska, E., Piotrowska, E., Węgrzyn, G., & Gabig-Cimińska, M. (2015b). Effects of flavonoids on expression of genes involved in cell cycle regulation and DNA replication in human fibroblasts. Molecular and Cellular Biochemistry, 407, 97–109.CrossRefPubMedPubMedCentral Moskot, M., Jakóbkiewicz-Banecka, J., Smolińska, E., Piotrowska, E., Węgrzyn, G., & Gabig-Cimińska, M. (2015b). Effects of flavonoids on expression of genes involved in cell cycle regulation and DNA replication in human fibroblasts. Molecular and Cellular Biochemistry, 407, 97–109.CrossRefPubMedPubMedCentral
go back to reference Moskot, M., Montefusco, S., Jakóbkiewicz-Banecka, J., Mozolewski, P., Węgrzyn, A., Di Bernardo, D., et al. (2014). The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation. Journal of Biological Chemistry, 289, 17054–17069.CrossRefPubMedPubMedCentral Moskot, M., Montefusco, S., Jakóbkiewicz-Banecka, J., Mozolewski, P., Węgrzyn, A., Di Bernardo, D., et al. (2014). The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation. Journal of Biological Chemistry, 289, 17054–17069.CrossRefPubMedPubMedCentral
go back to reference Petrosino, S., Ahmad, A., Marcolongo, G., Esposito, E., Allarà, M., Verde, R., et al. (2015). Diacerein is a potent and selective inhibitor of palmitoylethanolamide inactivation with analgesic activity in a rat model of acute inflammatory pain. Pharmacological Research, 91, 9–14.CrossRefPubMed Petrosino, S., Ahmad, A., Marcolongo, G., Esposito, E., Allarà, M., Verde, R., et al. (2015). Diacerein is a potent and selective inhibitor of palmitoylethanolamide inactivation with analgesic activity in a rat model of acute inflammatory pain. Pharmacological Research, 91, 9–14.CrossRefPubMed
go back to reference Piotrowska, E., Jakóbkiewicz-Banecka, J., Barańska, S., Tylki-Szymańska, A., Czartoryska, B., Wegrzyn, A., et al. (2006). Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses. European Journal of Human Genetics, 14, 846–852.CrossRefPubMed Piotrowska, E., Jakóbkiewicz-Banecka, J., Barańska, S., Tylki-Szymańska, A., Czartoryska, B., Wegrzyn, A., et al. (2006). Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses. European Journal of Human Genetics, 14, 846–852.CrossRefPubMed
go back to reference Pritchard, C., Mayers, A., & Baldwin, D. (2013). Changing patterns of neurological mortality in the 10 major developed countries—1979–2010. Public Health, 2013(127), 357–368.CrossRef Pritchard, C., Mayers, A., & Baldwin, D. (2013). Changing patterns of neurological mortality in the 10 major developed countries—1979–2010. Public Health, 2013(127), 357–368.CrossRef
go back to reference Pryor, W. M., Biagioli, M., Shahani, N., Swarnkar, S., Huang, W. C., Page, D. T., et al. (2014). Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington’s disease. Science Signal, 7, ra103.CrossRef Pryor, W. M., Biagioli, M., Shahani, N., Swarnkar, S., Huang, W. C., Page, D. T., et al. (2014). Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington’s disease. Science Signal, 7, ra103.CrossRef
go back to reference Ratovitski, T., Arbez, N., Stewart, J. C., Chighladze, E., & Ross, C. A. (2015). PRMT5- mediated symmetric arginine dimethylation is attenuated by mutant Huntingtin and is impaired in Huntington’s disease (HD). Cell Cycle, 14, 1716–1729.CrossRefPubMedPubMedCentral Ratovitski, T., Arbez, N., Stewart, J. C., Chighladze, E., & Ross, C. A. (2015). PRMT5- mediated symmetric arginine dimethylation is attenuated by mutant Huntingtin and is impaired in Huntington’s disease (HD). Cell Cycle, 14, 1716–1729.CrossRefPubMedPubMedCentral
go back to reference Ravikumar, B., Duden, R., & Rubinsztein, D. C. (2002). Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Human Molecular Genetics, 11, 1107–1117.CrossRefPubMed Ravikumar, B., Duden, R., & Rubinsztein, D. C. (2002). Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Human Molecular Genetics, 11, 1107–1117.CrossRefPubMed
go back to reference Ravikumar, B., Vacher, C., Berger, Z., Davies, J. E., Luo, S., Oroz, L. G., et al. (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genetics, 36, 585–595.CrossRefPubMed Ravikumar, B., Vacher, C., Berger, Z., Davies, J. E., Luo, S., Oroz, L. G., et al. (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genetics, 36, 585–595.CrossRefPubMed
go back to reference Sameni, S., Syed, A., Marsh, J. L., & Digman, M. A. (2016). The phasor-FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington disease. Scientific Reports, 6, 34755.CrossRefPubMedPubMedCentral Sameni, S., Syed, A., Marsh, J. L., & Digman, M. A. (2016). The phasor-FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington disease. Scientific Reports, 6, 34755.CrossRefPubMedPubMedCentral
go back to reference Shannon, K. M., & Fraint, A. (2015). Therapeutic advances in Huntington’s disease. Movement Disorders, 30, 1539–1546.CrossRefPubMed Shannon, K. M., & Fraint, A. (2015). Therapeutic advances in Huntington’s disease. Movement Disorders, 30, 1539–1546.CrossRefPubMed
go back to reference Tasdemir, E., Galluzzi, L., Maiuri, M. C., Criollo, A., Vitale, I., Hangen, E., et al. (2008). Methods for assessing autophagy and autophagic cell death. Methods in Molecular Biology, 445, 29–76.CrossRefPubMed Tasdemir, E., Galluzzi, L., Maiuri, M. C., Criollo, A., Vitale, I., Hangen, E., et al. (2008). Methods for assessing autophagy and autophagic cell death. Methods in Molecular Biology, 445, 29–76.CrossRefPubMed
go back to reference Tsai, T. H. (2005). Concurrent measurement of unbound genistein in the blood, brain and bile of anesthetized rats using microdialysis and its pharmacokinetic application. Journal of Chromatography A, 1073, 317–322.CrossRefPubMed Tsai, T. H. (2005). Concurrent measurement of unbound genistein in the blood, brain and bile of anesthetized rats using microdialysis and its pharmacokinetic application. Journal of Chromatography A, 1073, 317–322.CrossRefPubMed
go back to reference Wegrzyn, G., Jakóbkiewicz-Banecka, J., Gabig-Cimińska, M., Piotrowska, E., Narajczyk, M., Kloska, A., et al. (2010). Genistein: A natural isoflavone with a potential for treatment of genetic diseases. Biochemical Society Transactions, 38, 695–701.CrossRefPubMed Wegrzyn, G., Jakóbkiewicz-Banecka, J., Gabig-Cimińska, M., Piotrowska, E., Narajczyk, M., Kloska, A., et al. (2010). Genistein: A natural isoflavone with a potential for treatment of genetic diseases. Biochemical Society Transactions, 38, 695–701.CrossRefPubMed
go back to reference Yang, Y. P., Hu, L. F., Zheng, H. F., Mao, C. J., Hu, W. D., Xiong, K. P., et al. (2013). Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacologica Sinica, 34, 625–635.CrossRefPubMedPubMedCentral Yang, Y. P., Hu, L. F., Zheng, H. F., Mao, C. J., Hu, W. D., Xiong, K. P., et al. (2013). Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacologica Sinica, 34, 625–635.CrossRefPubMedPubMedCentral
go back to reference Zhao, T., Hong, Y., Li, X. J., & Li, S. H. (2016). Subcellular clearance and accumulation of Huntington disease protein: A mini-review. Frontiers in Molecular Neuroscience, 9, 27.CrossRefPubMedPubMedCentral Zhao, T., Hong, Y., Li, X. J., & Li, S. H. (2016). Subcellular clearance and accumulation of Huntington disease protein: A mini-review. Frontiers in Molecular Neuroscience, 9, 27.CrossRefPubMedPubMedCentral
Metadata
Title
Correction of Huntington’s Disease Phenotype by Genistein-Induced Autophagy in the Cellular Model
Authors
Karolina Pierzynowska
Lidia Gaffke
Aleksandra Hać
Jagoda Mantej
Natalia Niedziałek
Joanna Brokowska
Grzegorz Węgrzyn
Publication date
01-03-2018
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 1/2018
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-018-8482-1

Other articles of this Issue 1/2018

NeuroMolecular Medicine 1/2018 Go to the issue