Skip to main content
Top
Published in: NeuroMolecular Medicine 4/2017

01-12-2017 | Original Paper

Mutation in GNE Downregulates Peroxiredoxin IV Altering ER Redox Homeostasis

Authors: Pratibha Chanana, Gayatri Padhy, Kalpana Bhargava, Ranjana Arya

Published in: NeuroMolecular Medicine | Issue 4/2017

Login to get access

Abstract

GNE myopathy is a rare neuromuscular genetic disorder characterized by early adult onset and muscle weakness due to mutation in sialic acid biosynthetic enzyme, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). More than 180 different GNE mutations are known all over the world with unclear pathomechanism. Although hyposialylation of glycoproteins is speculated to be the major cause, but cellular mechanism leading to loss of muscle mass has not yet been deciphered. Besides sialic acid biosynthesis, GNE affects other cellular functions such as cell adhesion and apoptosis. In order to understand the effect of mutant GNE protein on cellular functions, differential proteome profile of HEK293 cells overexpressing pathologically relevant recombinant mutant GNE protein (D207V and V603L) was analyzed. These cells, along with vector control and wild-type GNE-overexpressing cells, were subjected to two-dimensional gel electrophoresis coupled with mass spectrometry (MALDI-TOF/TOF MS/MS). In the study, 10 differentially expressed proteins were identified. Progenesis same spots software revealed downregulation of peroxiredoxin IV (PrdxIV), an ER-resident H2O2 sensor that regulates neurogenesis. Significant reduction in mRNA and protein levels of PrdxIV was observed in GNE mutant cell lines compared with vector control. However, neither total reactive oxygen species was altered nor H2O2 accumulation was observed in GNE mutant cell lines. Interestingly, ER redox state was significantly affected due to reduced normal GNE enzyme activity. Our study indicates that downregulation of PrdxIV affects ER redox state that may contribute to misfolding and aggregation of proteins in GNE myopathy.
Appendix
Available only for authorised users
Literature
go back to reference Abbasi, A., Corpeleijn, E., et al. (2012). Peroxiredoxin 4, a novel circulating biomarker for oxidative stress and the risk of incident cardiovascular disease and all-cause mortality. Journal of the American Heart Association, 1(5), e002956.CrossRefPubMedPubMedCentral Abbasi, A., Corpeleijn, E., et al. (2012). Peroxiredoxin 4, a novel circulating biomarker for oxidative stress and the risk of incident cardiovascular disease and all-cause mortality. Journal of the American Heart Association, 1(5), e002956.CrossRefPubMedPubMedCentral
go back to reference Amsili, S., Zer, H., et al. (2008). UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) binds to alpha-actinin 1: Novel pathways in skeletal muscle? PLoS ONE, 3(6), e2477.CrossRefPubMedPubMedCentral Amsili, S., Zer, H., et al. (2008). UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) binds to alpha-actinin 1: Novel pathways in skeletal muscle? PLoS ONE, 3(6), e2477.CrossRefPubMedPubMedCentral
go back to reference Baik, S. C., Kim, K. M., et al. (2004). Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Helicobacter pylori strain 26695. Journal of Bacteriology, 186(4), 949–955.CrossRefPubMedPubMedCentral Baik, S. C., Kim, K. M., et al. (2004). Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Helicobacter pylori strain 26695. Journal of Bacteriology, 186(4), 949–955.CrossRefPubMedPubMedCentral
go back to reference Broccolini, A., & Mirabella, M. (2015). Hereditary inclusion-body myopathies. Biochimica et Biophysica Acta, 1852(4), 644–650.CrossRefPubMed Broccolini, A., & Mirabella, M. (2015). Hereditary inclusion-body myopathies. Biochimica et Biophysica Acta, 1852(4), 644–650.CrossRefPubMed
go back to reference Choi, M. H., Ow, J. R., et al. (2016). Oxidative stress-mediated skeletal muscle degeneration: Molecules, mechanisms, and therapies. Oxidative Medicine and Cellular Longevity, 2016, 6842568.PubMed Choi, M. H., Ow, J. R., et al. (2016). Oxidative stress-mediated skeletal muscle degeneration: Molecules, mechanisms, and therapies. Oxidative Medicine and Cellular Longevity, 2016, 6842568.PubMed
go back to reference Galeano, B., Klootwijk, R., et al. (2007). Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. Journal of Clinical Investigation, 117(6), 1585–1594.CrossRefPubMedPubMedCentral Galeano, B., Klootwijk, R., et al. (2007). Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. Journal of Clinical Investigation, 117(6), 1585–1594.CrossRefPubMedPubMedCentral
go back to reference Grover, S., & Arya, R. (2014). Role of UDP-N-acetylglucosamine2-epimerase/N-acetylmannosamine kinase (GNE) in beta1-integrin-mediated cell adhesion. Molecular Neurobiology, 50(2), 257–273.CrossRefPubMed Grover, S., & Arya, R. (2014). Role of UDP-N-acetylglucosamine2-epimerase/N-acetylmannosamine kinase (GNE) in beta1-integrin-mediated cell adhesion. Molecular Neurobiology, 50(2), 257–273.CrossRefPubMed
go back to reference Harazi, A., Becker-Cohen, M., et al. (2017). The interaction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) and alpha-actinin 2 Is altered in GNE myopathy M743T mutant. Molecular Neurobiology, 54(4), 2928–2938.CrossRefPubMed Harazi, A., Becker-Cohen, M., et al. (2017). The interaction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) and alpha-actinin 2 Is altered in GNE myopathy M743T mutant. Molecular Neurobiology, 54(4), 2928–2938.CrossRefPubMed
go back to reference Hinderlich, S., Salama, I., et al. (2004). The homozygous M712T mutation of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase results in reduced enzyme activities but not in altered overall cellular sialylation in hereditary inclusion body myopathy. FEBS Letters, 566(1–3), 105–109.CrossRefPubMed Hinderlich, S., Salama, I., et al. (2004). The homozygous M712T mutation of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase results in reduced enzyme activities but not in altered overall cellular sialylation in hereditary inclusion body myopathy. FEBS Letters, 566(1–3), 105–109.CrossRefPubMed
go back to reference Kanekura, K., Ishigaki, S., et al. (2013). Establishment of a system for monitoring endoplasmic reticulum redox state in mammalian cells. Laboratory Investigation, 93(11), 1254–1258.CrossRefPubMedPubMedCentral Kanekura, K., Ishigaki, S., et al. (2013). Establishment of a system for monitoring endoplasmic reticulum redox state in mammalian cells. Laboratory Investigation, 93(11), 1254–1258.CrossRefPubMedPubMedCentral
go back to reference Kwofie, M. A., & Skowronski, J. (2008). Specific recognition of Rac2 and Cdc42 by DOCK2 and DOCK9 guanine nucleotide exchange factors. Journal of Biological Chemistry, 283(6), 3088–3096.CrossRefPubMed Kwofie, M. A., & Skowronski, J. (2008). Specific recognition of Rac2 and Cdc42 by DOCK2 and DOCK9 guanine nucleotide exchange factors. Journal of Biological Chemistry, 283(6), 3088–3096.CrossRefPubMed
go back to reference Ling, L. U., Tan, K. B., et al. (2011). The role of reactive oxygen species and autophagy in safingol-induced cell death. Cell Death and Disease, 2, e129.CrossRefPubMedPubMedCentral Ling, L. U., Tan, K. B., et al. (2011). The role of reactive oxygen species and autophagy in safingol-induced cell death. Cell Death and Disease, 2, e129.CrossRefPubMedPubMedCentral
go back to reference Merksamer, P. I., Trusina, A., et al. (2008). Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions. Cell, 135(5), 933–947.CrossRefPubMedPubMedCentral Merksamer, P. I., Trusina, A., et al. (2008). Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions. Cell, 135(5), 933–947.CrossRefPubMedPubMedCentral
go back to reference Oka, O. B., & Bulleid, N. J. (2013). Forming disulfides in the endoplasmic reticulum. Biochimica et Biophysica Acta, 1833(11), 2425–2429.CrossRefPubMed Oka, O. B., & Bulleid, N. J. (2013). Forming disulfides in the endoplasmic reticulum. Biochimica et Biophysica Acta, 1833(11), 2425–2429.CrossRefPubMed
go back to reference Padhy, G., Sethy, N. K., et al. (2013). Abundance of plasma antioxidant proteins confers tolerance to acute hypobaric hypoxia exposure. High Altitude Medicine & Biology, 14(3), 289–297.CrossRef Padhy, G., Sethy, N. K., et al. (2013). Abundance of plasma antioxidant proteins confers tolerance to acute hypobaric hypoxia exposure. High Altitude Medicine & Biology, 14(3), 289–297.CrossRef
go back to reference Poynton, R. A., & Hampton, M. B. (2014). Peroxiredoxins as biomarkers of oxidative stress. Biochimica et Biophysica Acta, 1840(2), 906–912.CrossRefPubMed Poynton, R. A., & Hampton, M. B. (2014). Peroxiredoxins as biomarkers of oxidative stress. Biochimica et Biophysica Acta, 1840(2), 906–912.CrossRefPubMed
go back to reference Roussel, B. D., Kruppa, A. J., et al. (2013). Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurology, 12(1), 105–118.CrossRefPubMed Roussel, B. D., Kruppa, A. J., et al. (2013). Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurology, 12(1), 105–118.CrossRefPubMed
go back to reference Schwarzkopf, M., Knobeloch, K. P., et al. (2002). Sialylation is essential for early development in mice. Proceedings of the National Academy of Sciences, 99(8), 5267–5270.CrossRef Schwarzkopf, M., Knobeloch, K. P., et al. (2002). Sialylation is essential for early development in mice. Proceedings of the National Academy of Sciences, 99(8), 5267–5270.CrossRef
go back to reference Singh, R., & Arya, R. (2016). GNE myopathy and cell apoptosis: A comparative mutation analysis. Molecular Neurobiology, 53(5), 3088–3101.CrossRefPubMed Singh, R., & Arya, R. (2016). GNE myopathy and cell apoptosis: A comparative mutation analysis. Molecular Neurobiology, 53(5), 3088–3101.CrossRefPubMed
go back to reference Tateyama, M., Takeda, A., et al. (2003). Oxidative stress and predominant Abeta 42(43) deposition in myopathies with rimmed vacuoles. Acta Neuropathologica, 105(6), 581–585.PubMed Tateyama, M., Takeda, A., et al. (2003). Oxidative stress and predominant Abeta 42(43) deposition in myopathies with rimmed vacuoles. Acta Neuropathologica, 105(6), 581–585.PubMed
go back to reference Tavender, T. J., & Bulleid, N. J. (2010). Peroxiredoxin IV protects cells from oxidative stress by removing H2O2 produced during disulphide formation. Journal of Cell Science, 123(Pt 15), 2672–2679.CrossRefPubMedPubMedCentral Tavender, T. J., & Bulleid, N. J. (2010). Peroxiredoxin IV protects cells from oxidative stress by removing H2O2 produced during disulphide formation. Journal of Cell Science, 123(Pt 15), 2672–2679.CrossRefPubMedPubMedCentral
go back to reference Tavender, T. J., Sheppard, A. M., et al. (2008). Peroxiredoxin IV is an endoplasmic reticulum-localized enzyme forming oligomeric complexes in human cells. Biochemical Journal, 411(1), 191–199.CrossRefPubMedPubMedCentral Tavender, T. J., Sheppard, A. M., et al. (2008). Peroxiredoxin IV is an endoplasmic reticulum-localized enzyme forming oligomeric complexes in human cells. Biochemical Journal, 411(1), 191–199.CrossRefPubMedPubMedCentral
go back to reference Trachootham, D., Lu, W., et al. (2008). Redox regulation of cell survival. Antioxidants & Redox Signaling, 10(8), 1343–1374.CrossRef Trachootham, D., Lu, W., et al. (2008). Redox regulation of cell survival. Antioxidants & Redox Signaling, 10(8), 1343–1374.CrossRef
go back to reference Tsuruta, Y., Furuta, A., et al. (2002). Increased expression of manganese superoxide dismutase is associated with that of nitrotyrosine in myopathies with rimmed vacuoles. Acta Neuropathologica, 103(1), 59–65.CrossRefPubMed Tsuruta, Y., Furuta, A., et al. (2002). Increased expression of manganese superoxide dismutase is associated with that of nitrotyrosine in myopathies with rimmed vacuoles. Acta Neuropathologica, 103(1), 59–65.CrossRefPubMed
go back to reference Valko, M., Leibfritz, D., et al. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 39(1), 44–84.CrossRef Valko, M., Leibfritz, D., et al. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 39(1), 44–84.CrossRef
go back to reference Varki, N. M., & Varki, A. (2007). Diversity in cell surface sialic acid presentations: Implications for biology and disease. Laboratory Investigation, 87(9), 851–857.CrossRefPubMed Varki, N. M., & Varki, A. (2007). Diversity in cell surface sialic acid presentations: Implications for biology and disease. Laboratory Investigation, 87(9), 851–857.CrossRefPubMed
go back to reference Wang, Z., Sun, Z., et al. (2006). Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase outside of sialic acid biosynthesis: Modulation of sialyltransferase and BiP expression, GM3 and GD3 biosynthesis, proliferation, and apoptosis, and ERK1/2 phosphorylation. Journal of Biological Chemistry, 281(37), 27016–27028.CrossRefPubMed Wang, Z., Sun, Z., et al. (2006). Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase outside of sialic acid biosynthesis: Modulation of sialyltransferase and BiP expression, GM3 and GD3 biosynthesis, proliferation, and apoptosis, and ERK1/2 phosphorylation. Journal of Biological Chemistry, 281(37), 27016–27028.CrossRefPubMed
go back to reference Weidemann, W., Stelzl, U., et al. (2006). The collapsin response mediator protein 1 (CRMP-1) and the promyelocytic leukemia zinc finger protein (PLZF) bind to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis. FEBS Letters, 580(28–29), 6649–6654.CrossRefPubMed Weidemann, W., Stelzl, U., et al. (2006). The collapsin response mediator protein 1 (CRMP-1) and the promyelocytic leukemia zinc finger protein (PLZF) bind to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis. FEBS Letters, 580(28–29), 6649–6654.CrossRefPubMed
go back to reference Yan, Y., Wladyka, C., et al. (2015). Prdx4 is a compartment-specific H2O2 sensor that regulates neurogenesis by controlling surface expression of GDE2. Nature Communications, 6, 7006.CrossRefPubMedPubMedCentral Yan, Y., Wladyka, C., et al. (2015). Prdx4 is a compartment-specific H2O2 sensor that regulates neurogenesis by controlling surface expression of GDE2. Nature Communications, 6, 7006.CrossRefPubMedPubMedCentral
Metadata
Title
Mutation in GNE Downregulates Peroxiredoxin IV Altering ER Redox Homeostasis
Authors
Pratibha Chanana
Gayatri Padhy
Kalpana Bhargava
Ranjana Arya
Publication date
01-12-2017
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 4/2017
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-017-8467-5

Other articles of this Issue 4/2017

NeuroMolecular Medicine 4/2017 Go to the issue