Skip to main content
Top
Published in: NeuroMolecular Medicine 2-3/2017

Open Access 01-09-2017 | Original Paper

Deferiprone Rescues Behavioral Deficits Induced by Mild Iron Exposure in a Mouse Model of Alpha-Synuclein Aggregation

Authors: Eleonora Carboni, Lars Tatenhorst, Lars Tönges, Elisabeth Barski, Vivian Dambeck, Mathias Bähr, Paul Lingor

Published in: NeuroMolecular Medicine | Issue 2-3/2017

Login to get access

Abstract

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, and its causes remain unknown. A major hallmark of the disease is the increasing presence of aggregated alpha-synuclein (aSyn). Furthermore, there is a solid consensus on iron (Fe) accumulation in several regions of PD brains during disease progression. In our study, we focused on the interaction of Fe and aggregating aSyn in vivo in a transgenic mouse model overexpressing human aSyn bearing the A53T mutation (prnp.aSyn.A53T). We utilized a neonatal iron-feeding model to exacerbate the motor phenotype of the transgenic mouse model. Beginning from day 100, mice were treated with deferiprone (DFP), a ferric chelator that is able to cross the blood–brain barrier and is currently used in clinics as treatment for hemosiderosis. Our paradigm resulted in an impairment of the learning abilities in the rotarod task and the novel object recognition test. DFP treatment significantly improved the performance in both tasks. Although this was not accompanied by alterations in aSyn aggregation, our results support DFP as possible therapeutic option in PD.
Appendix
Available only for authorised users
Literature
go back to reference Billings, J. L., Hare, D. J., Nurjono, M., Volitakis, I., Cherny, R. A., Bush, A. I., et al. (2016). Effects of neonatal iron feeding and chronic clioquinol administration on the Parkinsonian human A53T transgenic mouse. ACS Chemical Neuroscience, 7(3), 360–366. doi:10.1021/acschemneuro.5b00305.CrossRefPubMed Billings, J. L., Hare, D. J., Nurjono, M., Volitakis, I., Cherny, R. A., Bush, A. I., et al. (2016). Effects of neonatal iron feeding and chronic clioquinol administration on the Parkinsonian human A53T transgenic mouse. ACS Chemical Neuroscience, 7(3), 360–366. doi:10.​1021/​acschemneuro.​5b00305.CrossRefPubMed
go back to reference Binolfi, A., Rasia, R. M., Bertoncini, C. W., Ceolin, M., Zweckstetter, M., Griesinger, C., et al. (2006). Interaction of alpha-synuclein with divalent metal ions reveals key differences: A link between structure, binding specificity and fibrillation enhancement 21. Journal of the American Chemical Society, 128(30), 9893–9901. doi:10.1021/ja0618649.CrossRefPubMed Binolfi, A., Rasia, R. M., Bertoncini, C. W., Ceolin, M., Zweckstetter, M., Griesinger, C., et al. (2006). Interaction of alpha-synuclein with divalent metal ions reveals key differences: A link between structure, binding specificity and fibrillation enhancement 21. Journal of the American Chemical Society, 128(30), 9893–9901. doi:10.​1021/​ja0618649.CrossRefPubMed
go back to reference Butler, D. A., Scott, M. R., Bockman, J. M., Borchelt, D. R., Taraboulos, A., Hsiao, K. K., et al. (1988). Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. Journal of Virology, 62(5), 1558–1564.PubMedPubMedCentral Butler, D. A., Scott, M. R., Bockman, J. M., Borchelt, D. R., Taraboulos, A., Hsiao, K. K., et al. (1988). Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. Journal of Virology, 62(5), 1558–1564.PubMedPubMedCentral
go back to reference Colvin, R. A., Bush, A. I., Volitakis, I., Fontaine, C. P., Thomas, D., Kikuchi, K., et al. (2008). Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. American Journal of Physiology-Cell Physiology, 294, 726–742. doi:10.1152/ajpcell.00541.2007.CrossRef Colvin, R. A., Bush, A. I., Volitakis, I., Fontaine, C. P., Thomas, D., Kikuchi, K., et al. (2008). Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. American Journal of Physiology-Cell Physiology, 294, 726–742. doi:10.​1152/​ajpcell.​00541.​2007.CrossRef
go back to reference Devos, D., Moreau, C., Devedjian, J. C., Kluza, J., Petrault, M., Laloux, C., et al. (2014). Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxidants & Redox Signaling, 21(2), 195–210. doi:10.1089/ars.2013.5593.CrossRef Devos, D., Moreau, C., Devedjian, J. C., Kluza, J., Petrault, M., Laloux, C., et al. (2014). Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxidants & Redox Signaling, 21(2), 195–210. doi:10.​1089/​ars.​2013.​5593.CrossRef
go back to reference Elincx-Benizri, S., Glik, A., Merkel, D., Arad, M., Freimark, D., Kozlova, E., et al. (2016). Clinical experience with deferiprone treatment for Friedreich ataxia. Journal of Child Neurology, 31(8), 1036–1040. doi:10.1177/0883073816636087.CrossRefPubMed Elincx-Benizri, S., Glik, A., Merkel, D., Arad, M., Freimark, D., Kozlova, E., et al. (2016). Clinical experience with deferiprone treatment for Friedreich ataxia. Journal of Child Neurology, 31(8), 1036–1040. doi:10.​1177/​0883073816636087​.CrossRefPubMed
go back to reference Finkelstein, D. I., Hare, D. J., Billings, J. L., Sedjahtera, A., Nurjono, M., Arthofer, E., et al. (2016). Clioquinol improves cognitive, motor function, and microanatomy of the alpha-synuclein hA53T transgenic mice. ACS Chemical Neuroscience, 7(1), 119–129. doi:10.1021/acschemneuro.5b00253.CrossRefPubMed Finkelstein, D. I., Hare, D. J., Billings, J. L., Sedjahtera, A., Nurjono, M., Arthofer, E., et al. (2016). Clioquinol improves cognitive, motor function, and microanatomy of the alpha-synuclein hA53T transgenic mice. ACS Chemical Neuroscience, 7(1), 119–129. doi:10.​1021/​acschemneuro.​5b00253.CrossRefPubMed
go back to reference Fredenburg, A. M., Sethi, R. K., Allen, D. D., & Yokel, R. A. (1996). The pharmacokinetics and blood-brain barrier permeation of the chelators 1,2 dimethyl-, 1,2 diethyl-, and 1-[ethan-1-ol]-2-methyl-3-hydroxypyridin-4-one in the rat. Toxicology, 108(3), 191–199. doi:10.1016/0300-483X(95)03301-U.CrossRefPubMed Fredenburg, A. M., Sethi, R. K., Allen, D. D., & Yokel, R. A. (1996). The pharmacokinetics and blood-brain barrier permeation of the chelators 1,2 dimethyl-, 1,2 diethyl-, and 1-[ethan-1-ol]-2-methyl-3-hydroxypyridin-4-one in the rat. Toxicology, 108(3), 191–199. doi:10.​1016/​0300-483X(95)03301-U.CrossRefPubMed
go back to reference Fredriksson, A., Schröder, N., Eriksson, P., Izquierdo, I., & Archer, T. (1999). Neonatal iron exposure induces neurobehavioural dysfunctions in adult mice. Toxicology and Applied Pharmacology, 159(1), 25–30. doi:10.1006/taap.1999.8711.CrossRefPubMed Fredriksson, A., Schröder, N., Eriksson, P., Izquierdo, I., & Archer, T. (1999). Neonatal iron exposure induces neurobehavioural dysfunctions in adult mice. Toxicology and Applied Pharmacology, 159(1), 25–30. doi:10.​1006/​taap.​1999.​8711.CrossRefPubMed
go back to reference Galanello, R. (2007). Deferiprone in the treatment of transfusion-dependent thalassemia: A review and perspective. Therapeutics and Clinical Risk Management, 3(5), 795–805.PubMedPubMedCentral Galanello, R. (2007). Deferiprone in the treatment of transfusion-dependent thalassemia: A review and perspective. Therapeutics and Clinical Risk Management, 3(5), 795–805.PubMedPubMedCentral
go back to reference Giasson, B. I., Duda, J. E., Quinn, S. M., Zhang, B., Trojanowski, J. Q., & Lee, V. M.-Y. (2002). Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron, 34(4), 521–533. doi:10.1016/S0896-6273(02)00682-7.CrossRefPubMed Giasson, B. I., Duda, J. E., Quinn, S. M., Zhang, B., Trojanowski, J. Q., & Lee, V. M.-Y. (2002). Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron, 34(4), 521–533. doi:10.​1016/​S0896-6273(02)00682-7.CrossRefPubMed
go back to reference Luk, K. C., Kehm, V. M., Zhang, B., O’Brien, P., Trojanowski, J. Q., & Lee, V. M. Y. (2012). Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. The Journal of Experimental Medicine, 209(5), 975–986. doi:10.1084/jem.20112457.CrossRefPubMedPubMedCentral Luk, K. C., Kehm, V. M., Zhang, B., O’Brien, P., Trojanowski, J. Q., & Lee, V. M. Y. (2012). Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. The Journal of Experimental Medicine, 209(5), 975–986. doi:10.​1084/​jem.​20112457.CrossRefPubMedPubMedCentral
go back to reference Mutez, E., Nkiliza, A., Belarbi, K., de Broucker, A., Vanbesien-Mailliot, C., Bleuse, S., et al. (2014). Involvement of the immune system, endocytosis and EIF2 signaling in both genetically determined and sporadic forms of Parkinson’s disease. Neurobiology of Disease, 63, 165–170. doi:10.1016/j.nbd.2013.11.007.CrossRefPubMed Mutez, E., Nkiliza, A., Belarbi, K., de Broucker, A., Vanbesien-Mailliot, C., Bleuse, S., et al. (2014). Involvement of the immune system, endocytosis and EIF2 signaling in both genetically determined and sporadic forms of Parkinson’s disease. Neurobiology of Disease, 63, 165–170. doi:10.​1016/​j.​nbd.​2013.​11.​007.CrossRefPubMed
go back to reference Oprandy, J. J., Olson, J. G., & Scott, T. W. (1988). A rapid dot immunoassay for the detection of serum antibodies to eastern equine encephalomyelitis and St. Louis encephalitis viruses in sentinel chickens. The American Journal of Tropical Medicine and Hygiene, 38(1), 181–186.CrossRefPubMed Oprandy, J. J., Olson, J. G., & Scott, T. W. (1988). A rapid dot immunoassay for the detection of serum antibodies to eastern equine encephalomyelitis and St. Louis encephalitis viruses in sentinel chickens. The American Journal of Tropical Medicine and Hygiene, 38(1), 181–186.CrossRefPubMed
go back to reference Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science (New York, N.Y.), 276(5321), 2045–2047.CrossRef Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science (New York, N.Y.), 276(5321), 2045–2047.CrossRef
go back to reference Pringsheim, T., Jette, N., Frolkis, A., & Steeves, T. D. L. (2014). The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Movement Disorders, 29(13), 1583–1590. doi:10.1002/mds.25945.CrossRefPubMed Pringsheim, T., Jette, N., Frolkis, A., & Steeves, T. D. L. (2014). The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Movement Disorders, 29(13), 1583–1590. doi:10.​1002/​mds.​25945.CrossRefPubMed
go back to reference Saal, K.-A., Koch, J. C., Tatenhorst, L., Szegő, E. M., Ribas, V. T., Michel, U., et al. (2015). AAV. shRNA-mediated downregulation of ROCK2 attenuates degeneration of dopaminergic neurons in toxin-induced models of Parkinson’s disease in vitro and in vivo. Neurobiology of Disease, 73, 150–162. doi:10.1016/j.nbd.2014.09.013.CrossRefPubMed Saal, K.-A., Koch, J. C., Tatenhorst, L., Szegő, E. M., Ribas, V. T., Michel, U., et al. (2015). AAV. shRNA-mediated downregulation of ROCK2 attenuates degeneration of dopaminergic neurons in toxin-induced models of Parkinson’s disease in vitro and in vivo. Neurobiology of Disease, 73, 150–162. doi:10.​1016/​j.​nbd.​2014.​09.​013.CrossRefPubMed
go back to reference Singleton, A. B., Farrer, M. J., & Bonifati, V. (2013). The genetics of Parkinson’s disease: progress and therapeutic implications. Movement Disorders : Official Journal of the Movement Disorder Society, 28(1), 14–23. doi:10.1002/mds.25249.CrossRef Singleton, A. B., Farrer, M. J., & Bonifati, V. (2013). The genetics of Parkinson’s disease: progress and therapeutic implications. Movement Disorders : Official Journal of the Movement Disorder Society, 28(1), 14–23. doi:10.​1002/​mds.​25249.CrossRef
go back to reference Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature, 388(6645), 839–840. doi:10.1038/42166.CrossRefPubMed Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature, 388(6645), 839–840. doi:10.​1038/​42166.CrossRefPubMed
go back to reference Sripetchwandee, J., Pipatpiboon, N., Chattipakorn, N., & Chattipakorn, S. (2014). Combined therapy of iron chelator and antioxidant completely restores brain dysfunction induced by iron toxicity. PLoS ONE, 9(1), 1–15. doi:10.1371/journal.pone.0085115.CrossRef Sripetchwandee, J., Pipatpiboon, N., Chattipakorn, N., & Chattipakorn, S. (2014). Combined therapy of iron chelator and antioxidant completely restores brain dysfunction induced by iron toxicity. PLoS ONE, 9(1), 1–15. doi:10.​1371/​journal.​pone.​0085115.CrossRef
go back to reference Tatenhorst, L., Tönges, L., Saal, K.-A., Koch, J. C., Szegő, E. M., Bähr, M., et al. (2014). Rho kinase inhibition by fasudil in the striatal 6-hydroxydopamine lesion mouse model of Parkinson disease. Journal of Neuropathology and Experimental Neurology, 73(8), 770–779. doi:10.1097/NEN.0000000000000095.CrossRefPubMed Tatenhorst, L., Tönges, L., Saal, K.-A., Koch, J. C., Szegő, E. M., Bähr, M., et al. (2014). Rho kinase inhibition by fasudil in the striatal 6-hydroxydopamine lesion mouse model of Parkinson disease. Journal of Neuropathology and Experimental Neurology, 73(8), 770–779. doi:10.​1097/​NEN.​0000000000000095​.CrossRefPubMed
go back to reference Tönges, L., Frank, T., Tatenhorst, L., Saal, K. A., Koch, J. C., Szego, É. M., et al. (2012). Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson’s disease. Brain, 135, 3355–3370. doi:10.1093/brain/aws254.CrossRefPubMedPubMedCentral Tönges, L., Frank, T., Tatenhorst, L., Saal, K. A., Koch, J. C., Szego, É. M., et al. (2012). Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson’s disease. Brain, 135, 3355–3370. doi:10.​1093/​brain/​aws254.CrossRefPubMedPubMedCentral
go back to reference Workman, D. G., Tsatsanis, A., Lewis, F. W., Boyle, J. P., Mousadoust, M., Hettiarachchi, N. T., et al. (2015). Protection from neurodegeneration in the 6-hydroxydopamine (6-OHDA) model of Parkinson’s with novel 1-hydroxypyridin-2-one metal chelators. Metallomics, 7, 867–876. doi:10.1039/C4MT00326H.CrossRefPubMed Workman, D. G., Tsatsanis, A., Lewis, F. W., Boyle, J. P., Mousadoust, M., Hettiarachchi, N. T., et al. (2015). Protection from neurodegeneration in the 6-hydroxydopamine (6-OHDA) model of Parkinson’s with novel 1-hydroxypyridin-2-one metal chelators. Metallomics, 7, 867–876. doi:10.​1039/​C4MT00326H.CrossRefPubMed
Metadata
Title
Deferiprone Rescues Behavioral Deficits Induced by Mild Iron Exposure in a Mouse Model of Alpha-Synuclein Aggregation
Authors
Eleonora Carboni
Lars Tatenhorst
Lars Tönges
Elisabeth Barski
Vivian Dambeck
Mathias Bähr
Paul Lingor
Publication date
01-09-2017
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 2-3/2017
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-017-8447-9

Other articles of this Issue 2-3/2017

NeuroMolecular Medicine 2-3/2017 Go to the issue