Skip to main content
Top
Published in: NeuroMolecular Medicine 2-3/2017

01-09-2017 | Review Paper

Models for Studying Myelination, Demyelination and Remyelination

Authors: I. Osorio-Querejeta, M. Sáenz-Cuesta, M. Muñoz-Culla, D. Otaegui

Published in: NeuroMolecular Medicine | Issue 2-3/2017

Login to get access

Abstract

One of the most widely studied demyelinating diseases is multiple sclerosis, which is characterised by the appearance of demyelinating plaques, followed by myelin regeneration. Nevertheless, with disease progression, remyelination tends to fail, increasing the characteristic neurodegeneration of the disease. It is essential to understand the mechanisms that operate in the processes of myelination, demyelination and remyelination to develop treatments that promote the production of new myelin, thereby protecting the central nervous system. A huge variety of models have been developed to help improve our understanding of these processes. Nevertheless, no single model allows us to study all the processes involved in remyelination and usually more than one is needed to provide a full picture of related mechanisms. In this review, we summarise the most commonly used models for studying myelination, demyelination and remyelination and we analyse them critically to outline the most suitable ways of using them.
Literature
go back to reference Babri, S., Mehrvash, F., Mohaddes, G., Hatami, H., & Mirzaie, F. (2015). Effect of intrahippocampal administration of vitamin C and progesterone on learning in a model of multiple sclerosis in rats, 5(1), 83–87. doi:10.5681/apb.2015.011. Babri, S., Mehrvash, F., Mohaddes, G., Hatami, H., & Mirzaie, F. (2015). Effect of intrahippocampal administration of vitamin C and progesterone on learning in a model of multiple sclerosis in rats, 5(1), 83–87. doi:10.​5681/​apb.​2015.​011.
go back to reference Baker, D., & Amor, S. (2015). Mouse models of multiple sclerosis: Lost in translation? Current Pharmaceutical Design, 21, 2440–2452.CrossRefPubMed Baker, D., & Amor, S. (2015). Mouse models of multiple sclerosis: Lost in translation? Current Pharmaceutical Design, 21, 2440–2452.CrossRefPubMed
go back to reference Birgbauer, E., Rao, T. S., & Webb, M. (2004). Lysolecithin induces demyelination in vitro in a cerebellar slice culture system. Journal of Neuroscience Research, 78(September), 157–166. doi:10.1002/jnr.20248.CrossRefPubMed Birgbauer, E., Rao, T. S., & Webb, M. (2004). Lysolecithin induces demyelination in vitro in a cerebellar slice culture system. Journal of Neuroscience Research, 78(September), 157–166. doi:10.​1002/​jnr.​20248.CrossRefPubMed
go back to reference Buckley, C. E., Goldsmith, P., & Franklin, R. J. (2008). Zebrafish myelination: a transparent model for remyelination? Disease Model Mechanism, 1(4–5), 221–228. doi:10.1242/dmm.001248.CrossRef Buckley, C. E., Goldsmith, P., & Franklin, R. J. (2008). Zebrafish myelination: a transparent model for remyelination? Disease Model Mechanism, 1(4–5), 221–228. doi:10.​1242/​dmm.​001248.CrossRef
go back to reference Dousset, V., Brochet, B., Vital, A., Gross, C., Benazzouz, A., Boullerne, A., et al. (1995). Lysolecithin-induced demyelination in primates: Preliminary in vivo study with MR and magnetization transfer. American Journal of Neuroradiology, 16(2), 225–231.PubMed Dousset, V., Brochet, B., Vital, A., Gross, C., Benazzouz, A., Boullerne, A., et al. (1995). Lysolecithin-induced demyelination in primates: Preliminary in vivo study with MR and magnetization transfer. American Journal of Neuroradiology, 16(2), 225–231.PubMed
go back to reference Dubois-Dalcq, M., Williams, A., Stadelmann, C., Stankoff, B., Zalc, B., & Lubetzki, C. (2008). From fish to man: understanding endogenous remyelination in central nervous system demyelinating diseases. Brain A Journal of Neurology, 131, 1686–1700. doi:10.1093/brain/awn076.CrossRefPubMedPubMedCentral Dubois-Dalcq, M., Williams, A., Stadelmann, C., Stankoff, B., Zalc, B., & Lubetzki, C. (2008). From fish to man: understanding endogenous remyelination in central nervous system demyelinating diseases. Brain A Journal of Neurology, 131, 1686–1700. doi:10.​1093/​brain/​awn076.CrossRefPubMedPubMedCentral
go back to reference Goudarzvand, M., Javan, M., Mirnajafi-Zadeh, J., Mozafari, S., & Tiraihi, T. (2010). Vitamins E and D3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local injection of ethidium bromide. Cellular and Molecular Neurobiology, 30(2), 289–299. doi:10.1007/s10571-009-9451-x.CrossRefPubMed Goudarzvand, M., Javan, M., Mirnajafi-Zadeh, J., Mozafari, S., & Tiraihi, T. (2010). Vitamins E and D3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local injection of ethidium bromide. Cellular and Molecular Neurobiology, 30(2), 289–299. doi:10.​1007/​s10571-009-9451-x.CrossRefPubMed
go back to reference Hedvika, D., Gonzalez, M., Bhargava, N., Stancescu, M., Hickman, J. J., & Lambert, S. (2012). Rat costical oligodendrocyte-embryonic motoneuron co-culture: An in vitro axon-oilgodendrocyte interaction model. Journal of Biomaterials Tissue Engineering, 2(3), 206–214.CrossRef Hedvika, D., Gonzalez, M., Bhargava, N., Stancescu, M., Hickman, J. J., & Lambert, S. (2012). Rat costical oligodendrocyte-embryonic motoneuron co-culture: An in vitro axon-oilgodendrocyte interaction model. Journal of Biomaterials Tissue Engineering, 2(3), 206–214.CrossRef
go back to reference Jung, S. H., Kim, S., Chung, A. Y., Kim, H. T., So, J. H., Ryu, J., et al. (2010). Visualization of myelination in GFP-transgenic zebrafish. Developmental Dynamics, 239(2), 592–597. doi:10.1002/dvdy.22166.CrossRefPubMed Jung, S. H., Kim, S., Chung, A. Y., Kim, H. T., So, J. H., Ryu, J., et al. (2010). Visualization of myelination in GFP-transgenic zebrafish. Developmental Dynamics, 239(2), 592–597. doi:10.​1002/​dvdy.​22166.CrossRefPubMed
go back to reference Keough, M. B., Jensen, S. K., & Yong, V. W. (2015). Experimental demyelination and remyelination of murine spinal cord by focal injection of lysolecithin. Journal of Visualized Experiments, 97, 10–17. doi:10.3791/52679. Keough, M. B., Jensen, S. K., & Yong, V. W. (2015). Experimental demyelination and remyelination of murine spinal cord by focal injection of lysolecithin. Journal of Visualized Experiments, 97, 10–17. doi:10.​3791/​52679.
go back to reference Kirby, B. B., Takada, N., Latimer, A. J., Shin, J., Carney, T. J., Kelsh, R. N., et al. (2006). In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nature Neuroscience, 9(12), 1506–1511. doi:10.1038/nn1803.CrossRefPubMed Kirby, B. B., Takada, N., Latimer, A. J., Shin, J., Carney, T. J., Kelsh, R. N., et al. (2006). In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nature Neuroscience, 9(12), 1506–1511. doi:10.​1038/​nn1803.CrossRefPubMed
go back to reference Lorentzen, J. C., Issazadeh, S., Storch, M., Mustafa, M. I., Lassman, H., Linington, C., et al. (1995). Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund’s adjuvant. Journal of Neuroimmunology, 63(2), 193–205. doi:10.1016/0165-5728(95)00153-0.CrossRefPubMed Lorentzen, J. C., Issazadeh, S., Storch, M., Mustafa, M. I., Lassman, H., Linington, C., et al. (1995). Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund’s adjuvant. Journal of Neuroimmunology, 63(2), 193–205. doi:10.​1016/​0165-5728(95)00153-0.CrossRefPubMed
go back to reference Meffre, D., Shackleford, G., Hichor, M., Gorgievski, V., Tzavara, E. T., Trousson, A., et al. (2015). Liver X receptors alpha and beta promote myelination and remyelination in the cerebellum. Proceedings of the National Academy of Sciences, 8(3), 201424951. doi:10.1073/pnas.1424951112. Meffre, D., Shackleford, G., Hichor, M., Gorgievski, V., Tzavara, E. T., Trousson, A., et al. (2015). Liver X receptors alpha and beta promote myelination and remyelination in the cerebellum. Proceedings of the National Academy of Sciences, 8(3), 201424951. doi:10.​1073/​pnas.​1424951112.
go back to reference Mendel, I., de Rosbo, N. K., & Ben-Nun, A. (1995). A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: Fine specificity and T cell receptor Vβ expression of encephalitogenic T cells. European Journal of Immunology, 25(7), 1951–1959. doi:10.1002/eji.1830250723.CrossRefPubMed Mendel, I., de Rosbo, N. K., & Ben-Nun, A. (1995). A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: Fine specificity and T cell receptor Vβ expression of encephalitogenic T cells. European Journal of Immunology, 25(7), 1951–1959. doi:10.​1002/​eji.​1830250723.CrossRefPubMed
go back to reference Monaco, M. C. G., Maric, D., Bandeian, A., Leibovitch, E., Yang, W., & Major, E. O. (2012). Progenitor-derived oligodendrocyte culture system from human fetal brain. Journal of Visualized Experiments JoVE. doi:10.3791/4274.PubMedPubMedCentral Monaco, M. C. G., Maric, D., Bandeian, A., Leibovitch, E., Yang, W., & Major, E. O. (2012). Progenitor-derived oligodendrocyte culture system from human fetal brain. Journal of Visualized Experiments JoVE. doi:10.​3791/​4274.PubMedPubMedCentral
go back to reference Ogawa, S., Tokumoto, Y., Miyake, J., & Nagamune, T. (2011). Immunopanning selection of A2B5-positive cells increased the differentiation efficiency of induced pluripotent stem cells into oligodendrocytes. Neuroscience Letters. doi:10.1016/j.neulet.2010.11.070.PubMed Ogawa, S., Tokumoto, Y., Miyake, J., & Nagamune, T. (2011). Immunopanning selection of A2B5-positive cells increased the differentiation efficiency of induced pluripotent stem cells into oligodendrocytes. Neuroscience Letters. doi:10.​1016/​j.​neulet.​2010.​11.​070.PubMed
go back to reference Oskari Virtanen, J., & Jacobson, S. (2012). Viruses and multiple sclerosis. Current Drug Targets: CNS & Neurological Disorders, 11(5), 528–544. Oskari Virtanen, J., & Jacobson, S. (2012). Viruses and multiple sclerosis. Current Drug Targets: CNS & Neurological Disorders, 11(5), 528–544.
go back to reference Pang, Y., Zheng, B., Kimberly, S. L., Cai, Z., Rhodes, P. G., & Lin, R. C. S. (2012). Neuron-oligodendrocyte myelination co-culture derived from embryonic rat spinal cord and cerebral cortex. Brain and Behavior, 2(1), 53–67. doi:10.1002/brb3.33.CrossRefPubMedPubMedCentral Pang, Y., Zheng, B., Kimberly, S. L., Cai, Z., Rhodes, P. G., & Lin, R. C. S. (2012). Neuron-oligodendrocyte myelination co-culture derived from embryonic rat spinal cord and cerebral cortex. Brain and Behavior, 2(1), 53–67. doi:10.​1002/​brb3.​33.CrossRefPubMedPubMedCentral
go back to reference Rosenberg, S. S., Kelland, E. E., Tokar, E., De la Torre, A. R., & Chan, J. R. (2008). The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14662–14667. doi:10.1073/pnas.0805640105.CrossRefPubMedPubMedCentral Rosenberg, S. S., Kelland, E. E., Tokar, E., De la Torre, A. R., & Chan, J. R. (2008). The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14662–14667. doi:10.​1073/​pnas.​0805640105.CrossRefPubMedPubMedCentral
go back to reference Schnädelbach, O., Ozen, I., Blaschuk, O. W., Meyer, R. L., & Fawcett, J. W. (2001). N-cadherin is involved in axon-oligodendrocyte contact and myelination. Molecular and cellular neurosciences, 17(6), 1084–1093. doi:10.1006/mcne.2001.0961.CrossRefPubMed Schnädelbach, O., Ozen, I., Blaschuk, O. W., Meyer, R. L., & Fawcett, J. W. (2001). N-cadherin is involved in axon-oligodendrocyte contact and myelination. Molecular and cellular neurosciences, 17(6), 1084–1093. doi:10.​1006/​mcne.​2001.​0961.CrossRefPubMed
go back to reference Shi, J., Marinovich, A., & Barres, B. A. (1998). Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. The Journal of Nuroscience, 18(12), 4627–4636. Shi, J., Marinovich, A., & Barres, B. A. (1998). Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. The Journal of Nuroscience, 18(12), 4627–4636.
go back to reference van der Star, B. J., Vogel, D. Y. S., Kipp, M., Puentes, F., Baker, D., Amor, S. (2012). In Vitro and In Vivo Models of Multiple Sclerosis. CNS & Neurological Disorders: Drug Targets. doi:10.2174/187152712801661284. van der Star, B. J., Vogel, D. Y. S., Kipp, M., Puentes, F., Baker, D., Amor, S. (2012). In Vitro and In Vivo Models of Multiple Sclerosis. CNS & Neurological Disorders: Drug Targets. doi:10.​2174/​1871527128016612​84.
go back to reference Syed, Y. A., Baer, A., Hofer, M. P., González, G. A., Rundle, J., Myrta, S., et al. (2013). Inhibition of phosphodiesterase-4 promotes oligodendrocyte precursor cell differentiation and enhances CNS remyelination. EMBO Molecular Medicine, 5(12), 1918–1934. doi:10.1002/emmm.201303123.CrossRefPubMedPubMedCentral Syed, Y. A., Baer, A., Hofer, M. P., González, G. A., Rundle, J., Myrta, S., et al. (2013). Inhibition of phosphodiesterase-4 promotes oligodendrocyte precursor cell differentiation and enhances CNS remyelination. EMBO Molecular Medicine, 5(12), 1918–1934. doi:10.​1002/​emmm.​201303123.CrossRefPubMedPubMedCentral
go back to reference Thomson, C. E., Hunter, A. M., Griffiths, I. R., Edgar, J. M., & McCulloch, M. C. (2006). Spinal AMPA receptor inhibition attenuates mechanical allodynia and neuronal hyperexcitability following spinal cord injury in rats. Journal of Neuroscience Research, 84(11), 1703–1715. doi:10.1002/jnr.CrossRefPubMed Thomson, C. E., Hunter, A. M., Griffiths, I. R., Edgar, J. M., & McCulloch, M. C. (2006). Spinal AMPA receptor inhibition attenuates mechanical allodynia and neuronal hyperexcitability following spinal cord injury in rats. Journal of Neuroscience Research, 84(11), 1703–1715. doi:10.​1002/​jnr.CrossRefPubMed
go back to reference Vereyken, E. J. F., Fluitsma, D. M., Bolijn, M. J., Dijkstra, C. D., & Teunissen, C. E. (2009). An in vitro model for de- and remyelination using lysophosphatidyl choline in rodent whole brain spheroid cultures. Glia, 57(12), 1326–1340. doi:10.1002/glia.20852.CrossRefPubMed Vereyken, E. J. F., Fluitsma, D. M., Bolijn, M. J., Dijkstra, C. D., & Teunissen, C. E. (2009). An in vitro model for de- and remyelination using lysophosphatidyl choline in rodent whole brain spheroid cultures. Glia, 57(12), 1326–1340. doi:10.​1002/​glia.​20852.CrossRefPubMed
go back to reference Watanabe, M., Toyama, Y., & Nishiyama, A. (2002). Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. Journal of Neuroscience Research, 69(6), 826–836. doi:10.1002/jnr.10338.CrossRefPubMed Watanabe, M., Toyama, Y., & Nishiyama, A. (2002). Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. Journal of Neuroscience Research, 69(6), 826–836. doi:10.​1002/​jnr.​10338.CrossRefPubMed
go back to reference Wernig, M., Zhao, J.-P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., et al. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proceedings of the National Academy of Sciences, 105(15), 5856–5861. doi:10.1073/pnas.0801677105.CrossRef Wernig, M., Zhao, J.-P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., et al. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proceedings of the National Academy of Sciences, 105(15), 5856–5861. doi:10.​1073/​pnas.​0801677105.CrossRef
go back to reference Zamvil, S. S., Mitchell, D. J., Moore, A. C., Kitamura, K., Steinman, L., & Rothbard, J. B. (1986). T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature, 324(6094), 258–260. doi:10.1038/324258a0.CrossRefPubMed Zamvil, S. S., Mitchell, D. J., Moore, A. C., Kitamura, K., Steinman, L., & Rothbard, J. B. (1986). T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature, 324(6094), 258–260. doi:10.​1038/​324258a0.CrossRefPubMed
Metadata
Title
Models for Studying Myelination, Demyelination and Remyelination
Authors
I. Osorio-Querejeta
M. Sáenz-Cuesta
M. Muñoz-Culla
D. Otaegui
Publication date
01-09-2017
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 2-3/2017
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-017-8442-1

Other articles of this Issue 2-3/2017

NeuroMolecular Medicine 2-3/2017 Go to the issue