Skip to main content
Top
Published in: NeuroMolecular Medicine 4/2014

01-12-2014 | Original Paper

Multiple Mechanisms of Iron-Induced Amyloid Beta-Peptide Accumulation in SHSY5Y Cells: Protective Action of Negletein

Authors: Priyanjalee Banerjee, Arghyadip Sahoo, Shruti Anand, Anirban Ganguly, Giuliana Righi, Paolo Bovicelli, Luciano Saso, Sasanka Chakrabarti

Published in: NeuroMolecular Medicine | Issue 4/2014

Login to get access

Abstract

The increased accumulation of iron in the brain in Alzheimer’s disease (AD) is well documented, and excess iron is strongly implicated in the pathogenesis of the disease. The adverse effects of accumulated iron in AD brain may include the oxidative stress, altered amyloid beta-metabolism and the augmented toxicity of metal-bound amyloid beta 42. In this study, we have shown that exogenously added iron in the form of ferric ammonium citrate (FAC) leads to considerable accumulation of amyloid precursor protein (APP) without a corresponding change in the concerned gene expression in cultured SHSY5Y cells during exposure up to 48 h. This phenomenon is also associated with increased β-secretase activity and augmented release of amyloid beta 42 in the medium. Further, the increase in β-secretase activity, in SHSY5Y cells, upon exposure to iron apparently involves reactive oxygen species (ROS) and NF-κB activation. The synthetic flavone negletein (5,6-dihydroxy-7-methoxyflavone), which is a known chelator for iron, can significantly prevent the effects of FAC on APP metabolism in SHSY5Y cells. Further, this compound inhibits the iron-dependent formation of ROS and also blocks the iron-induced oligomerization of amyloid beta 42 in vitro. In concentrations used in this study, negletein alone appears to have only marginal toxic effects on cell viability, but, on the other hand, the drug is capable of ameliorating the iron-induced loss of cell viability considerably. Our results provide the initial evidence of potential therapeutic effects of negletein, which should be explored in suitable animal models of AD.
Literature
go back to reference Aguirre, P., Mena, N., Tapia, V., Arredondo, M., & Nunez, M. T. (2005). Iron homeostasis in neuronal cells: A role for IREG1. BioMed Central Neuroscience. doi:10.1186/1471-2202-6-3. Aguirre, P., Mena, N., Tapia, V., Arredondo, M., & Nunez, M. T. (2005). Iron homeostasis in neuronal cells: A role for IREG1. BioMed Central Neuroscience. doi:10.​1186/​1471-2202-6-3.
go back to reference Aracena, P., Aguirre, P., Munoz, P., & Nunez, M. T. (2009). Iron and glutathione at the crossroad of redox metabolism in neurons. Biological Research, 39, 157–165. Aracena, P., Aguirre, P., Munoz, P., & Nunez, M. T. (2009). Iron and glutathione at the crossroad of redox metabolism in neurons. Biological Research, 39, 157–165.
go back to reference Bandyopadhyay, S., Cahill, C., Balleidier, A., Huang, C., Lahiri, D. K., Huang, X., et al. (2013). Novel 5′ untranslated region directed blockers of iron-regulatory protein-1 dependent amyloid precursor protein translation: Implications for down syndrome and Alzheimer’s disease. PLoS One, 8(7), e65978.PubMedCentralPubMedCrossRef Bandyopadhyay, S., Cahill, C., Balleidier, A., Huang, C., Lahiri, D. K., Huang, X., et al. (2013). Novel 5′ untranslated region directed blockers of iron-regulatory protein-1 dependent amyloid precursor protein translation: Implications for down syndrome and Alzheimer’s disease. PLoS One, 8(7), e65978.PubMedCentralPubMedCrossRef
go back to reference Baptista, F. I., Henriques, A. G., Silva, A. M., Wiltfang, J., da Cruz, E., & Silva, O. A. (2014). Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer’s disease. ACS Chemical Neuroscience, 5(2), 83–92.PubMedCrossRef Baptista, F. I., Henriques, A. G., Silva, A. M., Wiltfang, J., da Cruz, E., & Silva, O. A. (2014). Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer’s disease. ACS Chemical Neuroscience, 5(2), 83–92.PubMedCrossRef
go back to reference Barnham, K. J., Kenche, V. B., Ciccotosto, G. D., Smith, D. P., Tew, D. J., Liu, X., et al. (2008). Platinum-based inhibitors of amyloid-β as therapeutic agents for Alzheimer’s disease. Proceedings of the National Academy Sciences of the United States of America, 105(19), 6813–6818.CrossRef Barnham, K. J., Kenche, V. B., Ciccotosto, G. D., Smith, D. P., Tew, D. J., Liu, X., et al. (2008). Platinum-based inhibitors of amyloid-β as therapeutic agents for Alzheimer’s disease. Proceedings of the National Academy Sciences of the United States of America, 105(19), 6813–6818.CrossRef
go back to reference Beaudoin, M. E., Poirel, V.-J., & Krushel, L. A. (2008). Regulating amyloid precursor protein synthesis through an internal ribosomal entry site. Nucleic Acids Research, 36(21), 6835–6847.PubMedCentralPubMedCrossRef Beaudoin, M. E., Poirel, V.-J., & Krushel, L. A. (2008). Regulating amyloid precursor protein synthesis through an internal ribosomal entry site. Nucleic Acids Research, 36(21), 6835–6847.PubMedCentralPubMedCrossRef
go back to reference Belyaev, N. D., Kellett, K. A., Beckett, C., Makova, N. Z., Revett, T. J., & Nalivaeva, N. N. (2010). The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a {beta}-secretase-dependent pathway. Journal of Biological Chemistry, 285(53), 41443–41454.PubMedCentralPubMedCrossRef Belyaev, N. D., Kellett, K. A., Beckett, C., Makova, N. Z., Revett, T. J., & Nalivaeva, N. N. (2010). The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a {beta}-secretase-dependent pathway. Journal of Biological Chemistry, 285(53), 41443–41454.PubMedCentralPubMedCrossRef
go back to reference Bonda, D. J., Lee, H., Blair, J. A., Zhu, X., Perry, G., & Smith, M. A. (2011). Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics, 3(3), 267–270.PubMedCentralPubMedCrossRef Bonda, D. J., Lee, H., Blair, J. A., Zhu, X., Perry, G., & Smith, M. A. (2011). Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics, 3(3), 267–270.PubMedCentralPubMedCrossRef
go back to reference Butterfield, D. A., Perluigi, M., Sultana, R., et al. (2006). Oxidative stress in Alzheimer’s disease brain: New insight from redox proteomics. European Journal of Pharmacology, 545(1), 39–50.PubMedCrossRef Butterfield, D. A., Perluigi, M., Sultana, R., et al. (2006). Oxidative stress in Alzheimer’s disease brain: New insight from redox proteomics. European Journal of Pharmacology, 545(1), 39–50.PubMedCrossRef
go back to reference Chakrabarti, S., Sinha, M., Thakurta, I. G., Banerjee, P., & Chattopadhyay, M. (2013). Oxidative stress and amyloid beta toxicity in Alzheimer’s disease: Intervention in a complex relationship by antioxidants. Current Medicinal Chemistry, 20(37), 4648–4664.PubMedCrossRef Chakrabarti, S., Sinha, M., Thakurta, I. G., Banerjee, P., & Chattopadhyay, M. (2013). Oxidative stress and amyloid beta toxicity in Alzheimer’s disease: Intervention in a complex relationship by antioxidants. Current Medicinal Chemistry, 20(37), 4648–4664.PubMedCrossRef
go back to reference Chen, C. H., Zhou, W., Liu, S., Deng, Y., Cai, F., Tone, M., et al. (2012). Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. The International Journal of Neuropsychopharmacology, 15(1), 77–90.PubMedCrossRef Chen, C. H., Zhou, W., Liu, S., Deng, Y., Cai, F., Tone, M., et al. (2012). Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. The International Journal of Neuropsychopharmacology, 15(1), 77–90.PubMedCrossRef
go back to reference Choi, D. Y., Lee, Y. J., Hong, J. T., & Lee, H. J. (2012). Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Research Bulletin, 87(2–3), 144–153.PubMedCrossRef Choi, D. Y., Lee, Y. J., Hong, J. T., & Lee, H. J. (2012). Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Research Bulletin, 87(2–3), 144–153.PubMedCrossRef
go back to reference Clark, J. B., Bates, T. E., Boakye, P., Kuimov, A., & Land, J. M. (1997). Investigation of mitochondrial defects in brain and skeletal muscle. In A. J. Turner & H. S. Bachelard (Eds.), Neurochemistry: A practical approach (pp. 151–174). New York: Oxford University Press Inc. Clark, J. B., Bates, T. E., Boakye, P., Kuimov, A., & Land, J. M. (1997). Investigation of mitochondrial defects in brain and skeletal muscle. In A. J. Turner & H. S. Bachelard (Eds.), Neurochemistry: A practical approach (pp. 151–174). New York: Oxford University Press Inc.
go back to reference Commenges, D., Scotet, V., Renaud, S., Jacqmin-Gadda, H., Barberger-Gateau, P., & Dartigues, J. F. (2000). Intake of flavonoids and risk of dementia. European Journal of Epidemiology, 16(4), 357–363.PubMedCrossRef Commenges, D., Scotet, V., Renaud, S., Jacqmin-Gadda, H., Barberger-Gateau, P., & Dartigues, J. F. (2000). Intake of flavonoids and risk of dementia. European Journal of Epidemiology, 16(4), 357–363.PubMedCrossRef
go back to reference Dai, X., Sun, Y., Gao, Z., & Jiang, Z. (2010). Copper enhances amyloid-β peptide neuro-toxicity and non β-aggregation: A series of experiments conducted upon copper- bound and copper-free amyloid-β peptide. Journal of Molecular Neuroscience, 41(1), 66–73.PubMedCrossRef Dai, X., Sun, Y., Gao, Z., & Jiang, Z. (2010). Copper enhances amyloid-β peptide neuro-toxicity and non β-aggregation: A series of experiments conducted upon copper- bound and copper-free amyloid-β peptide. Journal of Molecular Neuroscience, 41(1), 66–73.PubMedCrossRef
go back to reference Dragicevic, N., Smith, A., Lin, X., Yuan, F., Copes, N., Delic, V., et al. (2011). Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction. Journal of Alzheimer’s disease, 26(3), 507–521.PubMed Dragicevic, N., Smith, A., Lin, X., Yuan, F., Copes, N., Delic, V., et al. (2011). Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction. Journal of Alzheimer’s disease, 26(3), 507–521.PubMed
go back to reference Duce, J. A., Bush, A. I., & Adlard, P. A. (2011). Role of amyloid-beta-metal interactions in Alzheimer’s disease. Future Neurology, 6(5), 641–659.CrossRef Duce, J. A., Bush, A. I., & Adlard, P. A. (2011). Role of amyloid-beta-metal interactions in Alzheimer’s disease. Future Neurology, 6(5), 641–659.CrossRef
go back to reference Guo, C., Wang, T., Zheng, W., Shan, Z. Y., Teng, W. P., & Wang, Z. Y. (2013a). Intranasal deferoxamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer’s disease. Neurobiology of Aging, 34(2), 562–575.PubMedCrossRef Guo, C., Wang, T., Zheng, W., Shan, Z. Y., Teng, W. P., & Wang, Z. Y. (2013a). Intranasal deferoxamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer’s disease. Neurobiology of Aging, 34(2), 562–575.PubMedCrossRef
go back to reference Guo, C., Wang, P., Zhong, M. L., Wang, T., Huang, X. S., Li, J. Y., et al. (2013b). Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. Neurochemistry International, 62(2), 165–172.PubMedCrossRef Guo, C., Wang, P., Zhong, M. L., Wang, T., Huang, X. S., Li, J. Y., et al. (2013b). Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. Neurochemistry International, 62(2), 165–172.PubMedCrossRef
go back to reference Gutteridge, J. M. C. (1992). Iron and oxygen radicals in brain. Annals of Neurology, 32(S1), S16–S21.PubMedCrossRef Gutteridge, J. M. C. (1992). Iron and oxygen radicals in brain. Annals of Neurology, 32(S1), S16–S21.PubMedCrossRef
go back to reference Hallgren, B., & Sourander, P. (1958). The effect of age on the non-haemin iron in the human brain. Journal of Neurochemistry, 3(1), 41–51.PubMedCrossRef Hallgren, B., & Sourander, P. (1958). The effect of age on the non-haemin iron in the human brain. Journal of Neurochemistry, 3(1), 41–51.PubMedCrossRef
go back to reference Halliwell, B., & Gutteridge, J. M. C. (1998). Free radicals in biology and medicine. Oxford: Oxford University Press. Halliwell, B., & Gutteridge, J. M. C. (1998). Free radicals in biology and medicine. Oxford: Oxford University Press.
go back to reference Hickok, J. R., Sahni, S., Mikhed, Y., Bonini, M. G., & Thomas, D. D. (2011). Nitric oxide suppresses tumor cell migration through N-Myc downstream-regulated gene-1 (NDRG1) expression role of chelatable iron. The Journal of Biological Chemistry, 286(48), 41413–41424.PubMedCentralPubMedCrossRef Hickok, J. R., Sahni, S., Mikhed, Y., Bonini, M. G., & Thomas, D. D. (2011). Nitric oxide suppresses tumor cell migration through N-Myc downstream-regulated gene-1 (NDRG1) expression role of chelatable iron. The Journal of Biological Chemistry, 286(48), 41413–41424.PubMedCentralPubMedCrossRef
go back to reference Hoepken, H. H., Korten, T., Robinson, S. R., & Dringen, R. (2004). Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferring receptor in cultured astrocytes during incubation with ferric ammonium citrate. Journal of Neurochemistry, 88, 1194–1202.PubMedCrossRef Hoepken, H. H., Korten, T., Robinson, S. R., & Dringen, R. (2004). Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferring receptor in cultured astrocytes during incubation with ferric ammonium citrate. Journal of Neurochemistry, 88, 1194–1202.PubMedCrossRef
go back to reference Huang, X., Atwood, C. S., Moir, R. D., Hartshorn, M. A., Tanzi, R. E., & Bush, A. I. (2004). Trace metal contamination initiates the apparent auto-aggregation, amyloi- dosis, and oligomerization of Alzheimer’s Aβ peptides. Journal of Biological Inorganic Chemistry, 9(8), 954–960.PubMedCrossRef Huang, X., Atwood, C. S., Moir, R. D., Hartshorn, M. A., Tanzi, R. E., & Bush, A. I. (2004). Trace metal contamination initiates the apparent auto-aggregation, amyloi- dosis, and oligomerization of Alzheimer’s Aβ peptides. Journal of Biological Inorganic Chemistry, 9(8), 954–960.PubMedCrossRef
go back to reference Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C., et al. (2012). National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers and Dementia, 8(1), 1–13.CrossRef Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C., et al. (2012). National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers and Dementia, 8(1), 1–13.CrossRef
go back to reference Jana, S., Sinha, M., Chanda, D., Roy, T., Banerjee, K., Munshi, S., et al. (2011). Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: Implications in dopamine cytotoxicity and pathogenesis of Parkinson’s disease. Biochimica et Biophysica Acta, 1812(6), 663–673.PubMedCrossRef Jana, S., Sinha, M., Chanda, D., Roy, T., Banerjee, K., Munshi, S., et al. (2011). Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: Implications in dopamine cytotoxicity and pathogenesis of Parkinson’s disease. Biochimica et Biophysica Acta, 1812(6), 663–673.PubMedCrossRef
go back to reference Jomova, K., Vondrakova, D., Lawson, M., & Valko, M. (2010). Metals, oxidative stress and neurodegenerative disorders. Molecular and Cellular Biochemistry, 345(1–2), 91–104.PubMedCrossRef Jomova, K., Vondrakova, D., Lawson, M., & Valko, M. (2010). Metals, oxidative stress and neurodegenerative disorders. Molecular and Cellular Biochemistry, 345(1–2), 91–104.PubMedCrossRef
go back to reference Kanazawa, K., Uehara, M., Yanagitani, H., & Hashimoto, T. (2006). Bioavailable flavonoids to suppress the formation of 8-OHdG in HepG2 cells. Archives of Biochemistry and Biophysics, 455(2), 2197–2203.CrossRef Kanazawa, K., Uehara, M., Yanagitani, H., & Hashimoto, T. (2006). Bioavailable flavonoids to suppress the formation of 8-OHdG in HepG2 cells. Archives of Biochemistry and Biophysics, 455(2), 2197–2203.CrossRef
go back to reference Khemka, V. K., Bagchi, D., Bandyopadhyay, K., Bir, A., Chattopadhyay, M., Biswas, A., et al. (2014). Altered serum levels of adipokines and insulin in probable Alzheimer’s disease. Journal of Alzheimers Disease. doi:10.3233/JAD-140006. Khemka, V. K., Bagchi, D., Bandyopadhyay, K., Bir, A., Chattopadhyay, M., Biswas, A., et al. (2014). Altered serum levels of adipokines and insulin in probable Alzheimer’s disease. Journal of Alzheimers Disease. doi:10.​3233/​JAD-140006.
go back to reference Li, Y. P., Bushnell, A. F., Lee, C. M., Perlmutter, L. S., & Wong, S. K. (1996). Beta-amyloid induces apoptosis in human-derived neurotypic SH-SY5Y cells. Brain Research, 738(2), 196–204.PubMedCrossRef Li, Y. P., Bushnell, A. F., Lee, C. M., Perlmutter, L. S., & Wong, S. K. (1996). Beta-amyloid induces apoptosis in human-derived neurotypic SH-SY5Y cells. Brain Research, 738(2), 196–204.PubMedCrossRef
go back to reference Li, G., Zou, L. Y., Cao, C. M., & Yang, E. S. (2005). Coenzyme Q10 protects SHSY5Y neuronal cells from beta amyloid toxicity and oxygen-glucose deprivation by inhibiting the opening of the mitochondrial permeability transition pore. Biofactors, 25(1–4), 97–107.PubMedCrossRef Li, G., Zou, L. Y., Cao, C. M., & Yang, E. S. (2005). Coenzyme Q10 protects SHSY5Y neuronal cells from beta amyloid toxicity and oxygen-glucose deprivation by inhibiting the opening of the mitochondrial permeability transition pore. Biofactors, 25(1–4), 97–107.PubMedCrossRef
go back to reference Lin, Y.-Z., Yao, S. Y., Veach, R. A., Torgerson, T. R., & Hawiger, J. (1995). Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. The Journal of Biological Chemistry, 270(24), 14255–14258.PubMedCrossRef Lin, Y.-Z., Yao, S. Y., Veach, R. A., Torgerson, T. R., & Hawiger, J. (1995). Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. The Journal of Biological Chemistry, 270(24), 14255–14258.PubMedCrossRef
go back to reference Lombardo, E., Sabellico, C., Hájek, J., Staňková, V., Filipský, T., Balducci, V., et al. (2013). Protection of cells against oxidative stress by nanomolar levels of hydroxyflavones indicates a new type of intracellular antioxidant mechanism. PLoS One, 8(4), e60796.PubMedCentralPubMedCrossRef Lombardo, E., Sabellico, C., Hájek, J., Staňková, V., Filipský, T., Balducci, V., et al. (2013). Protection of cells against oxidative stress by nanomolar levels of hydroxyflavones indicates a new type of intracellular antioxidant mechanism. PLoS One, 8(4), e60796.PubMedCentralPubMedCrossRef
go back to reference Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L., & Markesbery, W. R. (1998). Copper, iron and zinc in Alzheimer’s disease senile plaques. Journal of the Neurological Sciences, 158(1), 47–52.PubMedCrossRef Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L., & Markesbery, W. R. (1998). Copper, iron and zinc in Alzheimer’s disease senile plaques. Journal of the Neurological Sciences, 158(1), 47–52.PubMedCrossRef
go back to reference Macáková, K., Mladěnka, P., Filipský, T., Říha, M., Jahodář, L., Trejtnar, F., et al. (2012). Iron reduction potentiates hydroxyl radical formation only in flavonols. Food Chemistry, 135(4), 2584–2592.PubMedCrossRef Macáková, K., Mladěnka, P., Filipský, T., Říha, M., Jahodář, L., Trejtnar, F., et al. (2012). Iron reduction potentiates hydroxyl radical formation only in flavonols. Food Chemistry, 135(4), 2584–2592.PubMedCrossRef
go back to reference Middleton, E, Jr, Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 52(4), 673–751.PubMed Middleton, E, Jr, Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 52(4), 673–751.PubMed
go back to reference Mills, E., Dong, X.-P., Wang, F., & Xu, H. (2010). Mechanisms of brain iron transport: Insight into neurodegeneration and CNS disorders. Future Medicinal Chemistry, 2(1), 51–64.PubMedCentralPubMedCrossRef Mills, E., Dong, X.-P., Wang, F., & Xu, H. (2010). Mechanisms of brain iron transport: Insight into neurodegeneration and CNS disorders. Future Medicinal Chemistry, 2(1), 51–64.PubMedCentralPubMedCrossRef
go back to reference Mladěnka, P., Macáková, K., Filipský, T., Zatloukalová, L., Jahodář, L., Bovicelli, P., et al. (2011). In vitro analysis of iron chelating activity of flavonoids. Journal of Inorganic Biochemistry, 105(5), 693–701.PubMedCrossRef Mladěnka, P., Macáková, K., Filipský, T., Zatloukalová, L., Jahodář, L., Bovicelli, P., et al. (2011). In vitro analysis of iron chelating activity of flavonoids. Journal of Inorganic Biochemistry, 105(5), 693–701.PubMedCrossRef
go back to reference Mura, C. V., Delgado, R., Aguirre, P., Bacigalupo, J., & Núñez, M. T. (2006). Quiescence induced by iron challenge protects neuroblastoma cells from oxidative stress. Journal of Neurochemistry, 98(1), 11–19.PubMedCrossRef Mura, C. V., Delgado, R., Aguirre, P., Bacigalupo, J., & Núñez, M. T. (2006). Quiescence induced by iron challenge protects neuroblastoma cells from oxidative stress. Journal of Neurochemistry, 98(1), 11–19.PubMedCrossRef
go back to reference Nakamura, M., Shishido, N., Nunomura, A., Smith, M. A., Perry, G., Hayashi, Y., et al. (2007). Three histidine residues of amyloid-beta peptide control the redox activity of copper and iron. Biochemistry, 46(44), 12737–12743.PubMedCrossRef Nakamura, M., Shishido, N., Nunomura, A., Smith, M. A., Perry, G., Hayashi, Y., et al. (2007). Three histidine residues of amyloid-beta peptide control the redox activity of copper and iron. Biochemistry, 46(44), 12737–12743.PubMedCrossRef
go back to reference Olivieri, G., Baysang, G., Meier, F., Müller-Spahn, F., Stähelin, H. B., Brockhaus, M., et al. (2001a). N-acetyl-l-cysteine protects SHSY5Y neuroblastoma cells from oxidative stress and cell cytotoxicity: Effects on beta-amyloid secretion and tau phosphorylation. Journal of Neurochemistry, 76(1), 224–233.PubMedCrossRef Olivieri, G., Baysang, G., Meier, F., Müller-Spahn, F., Stähelin, H. B., Brockhaus, M., et al. (2001a). N-acetyl-l-cysteine protects SHSY5Y neuroblastoma cells from oxidative stress and cell cytotoxicity: Effects on beta-amyloid secretion and tau phosphorylation. Journal of Neurochemistry, 76(1), 224–233.PubMedCrossRef
go back to reference Olivieri, G., Hess, C., Savaskan, E., Ly, C., Meier, F., Baysang, G., et al. (2001b). Melatonin protects SHSY5Y neuroblastoma cells from cobalt-induced oxidative stress, neurotoxicity and increased beta-amyloid secretion. Journal of Pineal Research, 31(4), 320–325.PubMedCrossRef Olivieri, G., Hess, C., Savaskan, E., Ly, C., Meier, F., Baysang, G., et al. (2001b). Melatonin protects SHSY5Y neuroblastoma cells from cobalt-induced oxidative stress, neurotoxicity and increased beta-amyloid secretion. Journal of Pineal Research, 31(4), 320–325.PubMedCrossRef
go back to reference Olivieri, G., Otten, U., Meier, F., Baysang, G., Dimitriades-Schmutz, B., Müller-Spahn, F., et al. (2003). Beta-amyloid modulates tyrosine kinase B receptor expression in SHSY5Y neuroblastoma cells: Influence of the antioxidant melatonin. Neuroscience, 120(3), 659–665.PubMedCrossRef Olivieri, G., Otten, U., Meier, F., Baysang, G., Dimitriades-Schmutz, B., Müller-Spahn, F., et al. (2003). Beta-amyloid modulates tyrosine kinase B receptor expression in SHSY5Y neuroblastoma cells: Influence of the antioxidant melatonin. Neuroscience, 120(3), 659–665.PubMedCrossRef
go back to reference Page, M., & Thorpe, R. (2002). Protein blotting by electroblotting. In J. M. Walker (Ed.), The protein protocols handbook (pp. 317–319). New Jersey: Humana Press.CrossRef Page, M., & Thorpe, R. (2002). Protein blotting by electroblotting. In J. M. Walker (Ed.), The protein protocols handbook (pp. 317–319). New Jersey: Humana Press.CrossRef
go back to reference Pfaffl, M. W. (2001). A new mathematical model for relative quantitative real-time RT-PCR. Nucleic Acids Research, 29(9), 2002–2007.CrossRef Pfaffl, M. W. (2001). A new mathematical model for relative quantitative real-time RT-PCR. Nucleic Acids Research, 29(9), 2002–2007.CrossRef
go back to reference Prasanthi, J. R., Huls, A., Thomasson, S., Thompson, A., Schommer, E., & Ghribi, O. (2009). Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on β-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Molecular Neurodegeneration, 4, 1. doi:10.1186/1750-1326-4-1.PubMedCentralPubMedCrossRef Prasanthi, J. R., Huls, A., Thomasson, S., Thompson, A., Schommer, E., & Ghribi, O. (2009). Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on β-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Molecular Neurodegeneration, 4, 1. doi:10.​1186/​1750-1326-4-1.PubMedCentralPubMedCrossRef
go back to reference Prasanthi, J. R., Schrag, M., Dasari, B., Marwarha, G., Dickson, A., Kirsch, W. M., et al. (2012). Deferiprone reduces amyloid-β and tau phosphorylation levels but not reactive oxygen species generation in hippocampus of rabbits fed a cholesterol-enriched diet. Journal of Alzheimer’s Disease, 30(1), 167–182.PubMedCentralPubMed Prasanthi, J. R., Schrag, M., Dasari, B., Marwarha, G., Dickson, A., Kirsch, W. M., et al. (2012). Deferiprone reduces amyloid-β and tau phosphorylation levels but not reactive oxygen species generation in hippocampus of rabbits fed a cholesterol-enriched diet. Journal of Alzheimer’s Disease, 30(1), 167–182.PubMedCentralPubMed
go back to reference Procházková, D., Boušová, I., Wilhelmová, N., et al. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513–523.PubMedCrossRef Procházková, D., Boušová, I., Wilhelmová, N., et al. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513–523.PubMedCrossRef
go back to reference Randall, C. N., Strasburger, D., Prozonic, J., Morris, S. N., Winkie, A. D., Parker, G. R., et al. (2009). Cluster analysis of risk factor genetic polymorphisms in Alzheimer’s disease. Neurochemical Research, 34(1), 23–28.PubMedCrossRef Randall, C. N., Strasburger, D., Prozonic, J., Morris, S. N., Winkie, A. D., Parker, G. R., et al. (2009). Cluster analysis of risk factor genetic polymorphisms in Alzheimer’s disease. Neurochemical Research, 34(1), 23–28.PubMedCrossRef
go back to reference Reddy, P. H., & Beal, M. F. (2008). Amyloid beta, mitochondrial dysfunction and synaptic damage: Implications for cognitive decline in aging and Alzheimer’s disease. Trends in Molecular Medicine, 14(2), 45–53.PubMedCentralPubMedCrossRef Reddy, P. H., & Beal, M. F. (2008). Amyloid beta, mitochondrial dysfunction and synaptic damage: Implications for cognitive decline in aging and Alzheimer’s disease. Trends in Molecular Medicine, 14(2), 45–53.PubMedCentralPubMedCrossRef
go back to reference Riemer, J., Hoepken, H. H., Czerwinska, H., Robinson, S. R., & Dringen, R. (2004). Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Analytical Biochemistry, 331(2), 370–375. Riemer, J., Hoepken, H. H., Czerwinska, H., Robinson, S. R., & Dringen, R. (2004). Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Analytical Biochemistry, 331(2), 370–375.
go back to reference Righi, G., Antonioletti, R., Silvestri, I. P., D’Antona, N., Lambusta, D., & Bovicelli, P. (2010). Convergent synthesis of mosloflavone, negletein and baicalein from crysin. Tetrahedron, 66(2010), 1294–1298.CrossRef Righi, G., Antonioletti, R., Silvestri, I. P., D’Antona, N., Lambusta, D., & Bovicelli, P. (2010). Convergent synthesis of mosloflavone, negletein and baicalein from crysin. Tetrahedron, 66(2010), 1294–1298.CrossRef
go back to reference Rogers, J. T., Randall, J. D., Cahill, C. M., Eder, P. S., Huang, X., Gunshin, H., et al. (2002). An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. The Journal of biological Chemistry, 277(47), 45518–45528.PubMedCrossRef Rogers, J. T., Randall, J. D., Cahill, C. M., Eder, P. S., Huang, X., Gunshin, H., et al. (2002). An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. The Journal of biological Chemistry, 277(47), 45518–45528.PubMedCrossRef
go back to reference Sambamurti, K., Kinsey, R., Maloney, B., Ge, Y. W., & Lahiri, D. K. (2004). Gene structure and organization of the human beta-secretase (BACE) promoter. Federation of American Societies for Experimental Biology Journal, 18, 1034–1036. Sambamurti, K., Kinsey, R., Maloney, B., Ge, Y. W., & Lahiri, D. K. (2004). Gene structure and organization of the human beta-secretase (BACE) promoter. Federation of American Societies for Experimental Biology Journal, 18, 1034–1036.
go back to reference Sato, N., & Morishita, R. (2013). Roles of vascular and metabolic components in cognitive dysfunction of Alzheimer disease: Short- and long-term modification by non-genetic risk factors. Frontiers in Aging Neuroscience, 5(1), 64.PubMedCentralPubMed Sato, N., & Morishita, R. (2013). Roles of vascular and metabolic components in cognitive dysfunction of Alzheimer disease: Short- and long-term modification by non-genetic risk factors. Frontiers in Aging Neuroscience, 5(1), 64.PubMedCentralPubMed
go back to reference Sinha, M., Behera, P., Bhowmick, P., Banerjee, K., Basu, S., & Chakrabarti, S. (2011). Aging promotes amyloid-β peptide induced mitochondrial dysfunctions in rat brain: A molecular link between aging and Alzheimer’s disease. Journal of Alzheimer’s Disease, 27(4), 753–765.PubMed Sinha, M., Behera, P., Bhowmick, P., Banerjee, K., Basu, S., & Chakrabarti, S. (2011). Aging promotes amyloid-β peptide induced mitochondrial dysfunctions in rat brain: A molecular link between aging and Alzheimer’s disease. Journal of Alzheimer’s Disease, 27(4), 753–765.PubMed
go back to reference Sinha, M., Bhowmick, P., Banerjee, A., & Chakrabarti, S. (2013). Antioxidant role of amyloid β protein in cell-free and biological systems: Implication for the pathogenesis of Alzheimer disease. Free Radical Biology and Medicine, 56(1), 184–192.PubMedCrossRef Sinha, M., Bhowmick, P., Banerjee, A., & Chakrabarti, S. (2013). Antioxidant role of amyloid β protein in cell-free and biological systems: Implication for the pathogenesis of Alzheimer disease. Free Radical Biology and Medicine, 56(1), 184–192.PubMedCrossRef
go back to reference Smith, D. G., Cappai, R., & Barnham, K. J. (2007a). The redox chemistry of the Alzheimer’s disease amyloid b peptide. Biochimica et Biophysica Acta, 1768(8), 1976–1990.PubMedCrossRef Smith, D. G., Cappai, R., & Barnham, K. J. (2007a). The redox chemistry of the Alzheimer’s disease amyloid b peptide. Biochimica et Biophysica Acta, 1768(8), 1976–1990.PubMedCrossRef
go back to reference Smith, D. P., Ciccotosto, G. D., Tew, D. J., Fodero-Tavoletti, M. T., Johanssen, T., & Masters, C. L. (2007b). Concentration dependent Cu2þ induced aggregation and dityrosine formation of the Alzheimer’s disease amyloid-b peptide. Biochemistry, 46(10), 2881–2891.PubMedCrossRef Smith, D. P., Ciccotosto, G. D., Tew, D. J., Fodero-Tavoletti, M. T., Johanssen, T., & Masters, C. L. (2007b). Concentration dependent Cu2þ induced aggregation and dityrosine formation of the Alzheimer’s disease amyloid-b peptide. Biochemistry, 46(10), 2881–2891.PubMedCrossRef
go back to reference Smith, M. A., Harris, P. L. R., Sayre, L. M., & Perry, G. (1997). Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proceedings of the National Academy of Sciences of the United States of America, 94(18), 9866–9868.PubMedCentralPubMedCrossRef Smith, M. A., Harris, P. L. R., Sayre, L. M., & Perry, G. (1997). Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proceedings of the National Academy of Sciences of the United States of America, 94(18), 9866–9868.PubMedCentralPubMedCrossRef
go back to reference Solano, D. C., Sironi, M., Bonfini, C., Solerte, S. B., Govoni, S., & Racchi, M. (2000). Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. Federation of American Societies for Experimental Biology Journal, 14(7), 1015–1022.PubMed Solano, D. C., Sironi, M., Bonfini, C., Solerte, S. B., Govoni, S., & Racchi, M. (2000). Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. Federation of American Societies for Experimental Biology Journal, 14(7), 1015–1022.PubMed
go back to reference Symonowicz, M., & Kolanek, M. (2012). Flavonoids and their properties to form chelate complexes. Biotechnology and Food Science, 76(1), 35–41. Symonowicz, M., & Kolanek, M. (2012). Flavonoids and their properties to form chelate complexes. Biotechnology and Food Science, 76(1), 35–41.
go back to reference Thakurta, I. G., Chattopadhyay, M., Ghosh, A., & Chakrabarti, S. (2012). Dietary supplementation with N-acetyl cysteine, α-tocopherol and α-lipoic acid reduces the extent of oxidative stress and proinflammatory state in aged rat brain. Biogerontology, 13(5), 479–488.PubMedCrossRef Thakurta, I. G., Chattopadhyay, M., Ghosh, A., & Chakrabarti, S. (2012). Dietary supplementation with N-acetyl cysteine, α-tocopherol and α-lipoic acid reduces the extent of oxidative stress and proinflammatory state in aged rat brain. Biogerontology, 13(5), 479–488.PubMedCrossRef
go back to reference Vanhoutte, G., Dewachter, I., Borghgraef, P., & Van Leuven, A. (2005). Non invasive in vivo MRI detection of neuritic plaques associated with iron in APP[V7171] transgenic mice, a model for Alzheimer’s disease. Magnetic Resonance in Medicine, 53(3), 607–613.PubMedCrossRef Vanhoutte, G., Dewachter, I., Borghgraef, P., & Van Leuven, A. (2005). Non invasive in vivo MRI detection of neuritic plaques associated with iron in APP[V7171] transgenic mice, a model for Alzheimer’s disease. Magnetic Resonance in Medicine, 53(3), 607–613.PubMedCrossRef
go back to reference Wan, L., Nie, G., Zhang, J., Luo, Y., Zhang, P., & Zhang, Z., et al. (2011). β-Amyloid peptide increaes levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radical Biology & Medicine, 50(1), 122–129. Wan, L., Nie, G., Zhang, J., Luo, Y., Zhang, P., & Zhang, Z., et al. (2011). β-Amyloid peptide increaes levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radical Biology & Medicine, 50(1), 122–129.
go back to reference Xiong, Z., Hongmei, Z., Lu, S., & Yu, L. (2011). Curcumin mediates presenilin-1 activity to reduce β-amyloid production in a model of Alzheimer’s Disease. Pharmacological Reports, 63(5), 1101–1108.PubMedCrossRef Xiong, Z., Hongmei, Z., Lu, S., & Yu, L. (2011). Curcumin mediates presenilin-1 activity to reduce β-amyloid production in a model of Alzheimer’s Disease. Pharmacological Reports, 63(5), 1101–1108.PubMedCrossRef
go back to reference Zheng, L., Calvo-Garrido, J., Hallbeck, M., Hultenby, K., Marcusson, J., & Cedazo-Minguez, A. (2013). Intracellular localization of amyloid-β peptide in SH-SY5Y neuroblastoma cells. Journal of Alzheimer’s Disease, 37(4), 713–733.PubMed Zheng, L., Calvo-Garrido, J., Hallbeck, M., Hultenby, K., Marcusson, J., & Cedazo-Minguez, A. (2013). Intracellular localization of amyloid-β peptide in SH-SY5Y neuroblastoma cells. Journal of Alzheimer’s Disease, 37(4), 713–733.PubMed
Metadata
Title
Multiple Mechanisms of Iron-Induced Amyloid Beta-Peptide Accumulation in SHSY5Y Cells: Protective Action of Negletein
Authors
Priyanjalee Banerjee
Arghyadip Sahoo
Shruti Anand
Anirban Ganguly
Giuliana Righi
Paolo Bovicelli
Luciano Saso
Sasanka Chakrabarti
Publication date
01-12-2014
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 4/2014
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-014-8328-4

Other articles of this Issue 4/2014

NeuroMolecular Medicine 4/2014 Go to the issue