Skip to main content
Top
Published in: Clinical Orthopaedics and Related Research® 3/2017

Open Access 01-03-2017 | Symposium: 2015 Meetings of the Musculoskeletal Tumor Society and the International Society of Limb Salvage

LUMiC® Endoprosthetic Reconstruction After Periacetabular Tumor Resection: Short-term Results

Authors: Michaël P. A. Bus, MSc, Andrzej Szafranski, MD, PhD, Simen Sellevold, MD, Tomasz Goryn, MD, PhD, Paul C. Jutte, MD, PhD, Jos A. M. Bramer, MD, PhD, M. Fiocco, PhD, Arne Streitbürger, MD, PhD, Daniel Kotrych, MD, PhD, Michiel A. J. van de Sande, MD, PhD, P. D. Sander Dijkstra, MD, PhD

Published in: Clinical Orthopaedics and Related Research® | Issue 3/2017

Login to get access

Abstract

Background

Reconstruction of periacetabular defects after pelvic tumor resection ranks among the most challenging procedures in orthopaedic oncology, and reconstructive techniques are generally associated with dissatisfying mechanical and nonmechanical complication rates. In an attempt to reduce the risk of dislocation, aseptic loosening, and infection, we introduced the LUMiC® prosthesis (implantcast, Buxtehude, Germany) in 2008. The LUMiC® prosthesis is a modular device, built of a separate stem (hydroxyapatite-coated uncemented or cemented) and acetabular cup. The stem and cup are available in different sizes (the latter of which is also available with silver coating for infection prevention) and are equipped with sawteeth at the junction to allow for rotational adjustment of cup position after implantation of the stem. Whether this implant indeed is durable at short-term followup has not been evaluated.

Questions/purposes

(1) What proportion of patients experience mechanical complications and what are the associated risk factors of periacetabular reconstruction with the LUMiC® after pelvic tumor resection? (2) What proportion of patients experience nonmechanical complications and what are the associated risk factors of periacetabular reconstruction with the LUMiC® after pelvic tumor resection? (3) What is the cumulative incidence of implant failure at 2 and 5 years and what are the mechanisms of reconstruction failure? (4) What is the functional outcome as assessed by Musculoskeletal Tumor Society (MSTS) score at final followup?

Methods

We performed a retrospective chart review of every patient in whom a LUMiC® prosthesis was used to reconstruct a periacetabular defect after internal hemipelvectomy for a pelvic tumor from July 2008 to June 2014 in eight centers of orthopaedic oncology with a minimum followup of 24 months. Forty-seven patients (26 men [55%]) with a mean age of 50 years (range, 12–78 years) were included. At review, 32 patients (68%) were alive. The reverse Kaplan-Meier method was used to calculate median followup, which was equal to 3.9 years (95% confidence interval [CI], 3.4–4.3). During the period under study, our general indications for using this implant were reconstruction of periacetabular defects after pelvic tumor resections in which the medial ilium adjacent to the sacroiliac joint was preserved; alternative treatments included hip transposition and saddle or custom-made prostheses in some of the contributing centers; these were generally used when the medial ilium was involved in the tumorous process or if the LUMiC® was not yet available in the specific country at that time. Conventional chondrosarcoma was the predominant diagnosis (n = 22 [47%]); five patients (11%) had osseous metastases of a distant carcinoma and three (6%) had multiple myeloma. Uncemented fixation (n = 43 [91%]) was preferred. Dual-mobility cups (n = 24 [51%]) were mainly used in case of a higher presumed risk of dislocation in the early period of our study; later, dual-mobility cups became the standard for the majority of the reconstructions. Silver-coated acetabular cups were used in 29 reconstructions (62%); because only the largest cup size was available with silver coating, its use depended on the cup size that was chosen. We used a competing risk model to estimate the cumulative incidence of implant failure.

Results

Six patients (13%) had a single dislocation; four (9%) had recurrent dislocations. The risk of dislocation was lower in reconstructions with a dual-mobility cup (one of 24 [4%]) than in those without (nine of 23 [39%]) (hazard ratio, 0.11; 95% CI, 0.01–0.89; p = 0.038). Three patients (6%; one with a preceding structural allograft reconstruction, one with poor initial fixation as a result of an intraoperative fracture, and one with a cemented stem) had loosening and underwent revision. Infections occurred in 13 reconstructions (28%). Median duration of surgery was 6.5 hours (range, 4.0–13.6 hours) for patients with an infection and 5.3 hours (range, 2.8–9.9 hours) for those without (p = 0.060); blood loss was 2.3 L (range, 0.8–8.2 L) for patients with an infection and 1.5 L (range, 0.4–3.8 L) for those without (p = 0.039). The cumulative incidences of implant failure at 2 and 5 years were 2.1% (95% CI, 0–6.3) and 17.3% (95% CI, 0.7–33.9) for mechanical reasons and 6.4% (95% CI, 0–13.4) and 9.2% (95% CI, 0.5–17.9) for infection, respectively. Reasons for reconstruction failure were instability (n = 1 [2%]), loosening (n = 3 [6%]), and infection (n = 4 [9%]). Mean MSTS functional outcome score at followup was 70% (range, 33%–93%).

Conclusions

At short-term followup, the LUMiC® prosthesis demonstrated a low frequency of mechanical complications and failure when used to reconstruct the acetabulum in patients who underwent major pelvic tumor resections, and we believe this is a useful reconstruction for periacetabular resections for tumor or failed prior reconstructions. Still, infection and dislocation are relatively common after these complex reconstructions. Dual-mobility articulation in our experience is associated with a lower risk of dislocation. Future, larger studies will need to further control for factors such as dual-mobility articulation and silver coating. We will continue to follow our patients over the longer term to ascertain the role of this implant in this setting.

Level of Evidence

Level IV, therapeutic study.
Literature
1.
go back to reference Aboulafia AJ, Buch R, Mathews J, Li W, Malawer MM. Reconstruction using the saddle prosthesis following excision of primary and metastatic periacetabular tumors. Clin Orthop Relat Res. 1995;314:203–213. Aboulafia AJ, Buch R, Mathews J, Li W, Malawer MM. Reconstruction using the saddle prosthesis following excision of primary and metastatic periacetabular tumors. Clin Orthop Relat Res. 1995;314:203–213.
2.
go back to reference Aljassir F, Beadel GP, Turcotte RE, Griffin AM, Bell RS, Wunder JS, Isler MH. Outcome after pelvic sarcoma resection reconstructed with saddle prosthesis. Clin Orthop Relat Res. 2005;438:36–41.CrossRefPubMed Aljassir F, Beadel GP, Turcotte RE, Griffin AM, Bell RS, Wunder JS, Isler MH. Outcome after pelvic sarcoma resection reconstructed with saddle prosthesis. Clin Orthop Relat Res. 2005;438:36–41.CrossRefPubMed
3.
go back to reference Angelini A, Drago G, Trovarelli G, Calabro T, Ruggieri P. Infection after surgical resection for pelvic bone tumors: an analysis of 270 patients from one institution. Clin Orthop Relat Res. 2014;472:349–359.CrossRefPubMed Angelini A, Drago G, Trovarelli G, Calabro T, Ruggieri P. Infection after surgical resection for pelvic bone tumors: an analysis of 270 patients from one institution. Clin Orthop Relat Res. 2014;472:349–359.CrossRefPubMed
4.
go back to reference Beadel GP, McLaughlin CE, Wunder JS, Griffin AM, Ferguson PC, Bell RS. Outcome in two groups of patients with allograft-prosthetic reconstruction of pelvic tumor defects. Clin Orthop Relat Res. 2005;438:30–35.CrossRefPubMed Beadel GP, McLaughlin CE, Wunder JS, Griffin AM, Ferguson PC, Bell RS. Outcome in two groups of patients with allograft-prosthetic reconstruction of pelvic tumor defects. Clin Orthop Relat Res. 2005;438:30–35.CrossRefPubMed
5.
go back to reference Bell RS, Davis AM, Wunder JS, Buconjic T, McGoveran B, Gross AE. Allograft reconstruction of the acetabulum after resection of stage-IIB sarcoma. Intermediate-term results. J Bone Joint Surg Am. 1997;79:1663–1674.CrossRefPubMed Bell RS, Davis AM, Wunder JS, Buconjic T, McGoveran B, Gross AE. Allograft reconstruction of the acetabulum after resection of stage-IIB sarcoma. Intermediate-term results. J Bone Joint Surg Am. 1997;79:1663–1674.CrossRefPubMed
6.
go back to reference Blunn GW, Briggs TW, Cannon SR, Walker PS, Unwin PS, Culligan S, Cobb JP. Cementless fixation for primary segmental bone tumor endoprostheses. Clin Orthop Relat Res. 2000;372:223–230.CrossRef Blunn GW, Briggs TW, Cannon SR, Walker PS, Unwin PS, Culligan S, Cobb JP. Cementless fixation for primary segmental bone tumor endoprostheses. Clin Orthop Relat Res. 2000;372:223–230.CrossRef
7.
go back to reference Bus MP, Boerhout EJ, Bramer JA, Dijkstra PD. Clinical outcome of pedestal cup endoprosthetic reconstruction after resection of a peri-acetabular tumour. Bone Joint J. 2014;96:1706–1712.CrossRefPubMed Bus MP, Boerhout EJ, Bramer JA, Dijkstra PD. Clinical outcome of pedestal cup endoprosthetic reconstruction after resection of a peri-acetabular tumour. Bone Joint J. 2014;96:1706–1712.CrossRefPubMed
8.
go back to reference Campanacci M, Capanna R. Pelvic resections: the Rizzoli Institute experience. Orthop Clin North Am. 1991;22:65–86.PubMed Campanacci M, Capanna R. Pelvic resections: the Rizzoli Institute experience. Orthop Clin North Am. 1991;22:65–86.PubMed
9.
go back to reference Davis AM, Wright JG, Williams JI, Bombardier C, Griffin A, Bell RS. Development of a measure of physical function for patients with bone and soft tissue sarcoma. Qual Life Res. 1996;5:508–516.CrossRefPubMed Davis AM, Wright JG, Williams JI, Bombardier C, Griffin A, Bell RS. Development of a measure of physical function for patients with bone and soft tissue sarcoma. Qual Life Res. 1996;5:508–516.CrossRefPubMed
10.
go back to reference Delloye C, Banse X, Brichard B, Docquier PL, Cornu O. Pelvic reconstruction with a structural pelvic allograft after resection of a malignant bone tumor. J Bone Joint Surg Am. 2007;89:579–587.PubMed Delloye C, Banse X, Brichard B, Docquier PL, Cornu O. Pelvic reconstruction with a structural pelvic allograft after resection of a malignant bone tumor. J Bone Joint Surg Am. 2007;89:579–587.PubMed
11.
go back to reference Dominkus M, Darwish E, Funovics P. Reconstruction of the pelvis after resection of malignant bone tumours in children and adolescents. Recent Results Cancer Res. 2009;179:85–111.CrossRefPubMed Dominkus M, Darwish E, Funovics P. Reconstruction of the pelvis after resection of malignant bone tumours in children and adolescents. Recent Results Cancer Res. 2009;179:85–111.CrossRefPubMed
12.
go back to reference Donati D, Di Bella C, Frisoni T, Cevolani L, DeGroot H. Alloprosthetic composite is a suitable reconstruction after periacetabular tumor resection. Clin Orthop Relat Res. 2011;469:1450–1458.CrossRefPubMedPubMedCentral Donati D, Di Bella C, Frisoni T, Cevolani L, DeGroot H. Alloprosthetic composite is a suitable reconstruction after periacetabular tumor resection. Clin Orthop Relat Res. 2011;469:1450–1458.CrossRefPubMedPubMedCentral
13.
go back to reference Enneking WF, Dunham W, Gebhardt MC, Malawar M, Pritchard DJ. A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin Orthop Relat Res. 1993;286:241–246. Enneking WF, Dunham W, Gebhardt MC, Malawar M, Pritchard DJ. A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin Orthop Relat Res. 1993;286:241–246.
14.
go back to reference Enneking WF, Dunham WK. Resection and reconstruction for primary neoplasms involving the innominate bone. J Bone Joint Surg Am. 1978;60:731–746.CrossRefPubMed Enneking WF, Dunham WK. Resection and reconstruction for primary neoplasms involving the innominate bone. J Bone Joint Surg Am. 1978;60:731–746.CrossRefPubMed
15.
go back to reference Fisher NE, Patton JT, Grimer RJ, Porter D, Jeys L, Tillman RM, Abudu A, Carter SR. Ice-cream cone reconstruction of the pelvis: a new type of pelvic replacement: early results. J Bone Joint Surg Br. 2011;93:684–688.CrossRefPubMed Fisher NE, Patton JT, Grimer RJ, Porter D, Jeys L, Tillman RM, Abudu A, Carter SR. Ice-cream cone reconstruction of the pelvis: a new type of pelvic replacement: early results. J Bone Joint Surg Br. 2011;93:684–688.CrossRefPubMed
16.
go back to reference Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, Von Eiff C. Silver-coated megaendoprostheses in a rabbit model–an analysis of the infection rate and toxicological side effects. Biomaterials. 2004;25:5547–5556.CrossRefPubMed Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, Von Eiff C. Silver-coated megaendoprostheses in a rabbit model–an analysis of the infection rate and toxicological side effects. Biomaterials. 2004;25:5547–5556.CrossRefPubMed
17.
go back to reference Gosheger G, Hillmann A, Lindner N, Rodl R, Hoffmann C, Burger H, Winkelmann W. Soft tissue reconstruction of megaprostheses using a trevira tube. Clin Orthop Relat Res. 2001;393:264–271.CrossRef Gosheger G, Hillmann A, Lindner N, Rodl R, Hoffmann C, Burger H, Winkelmann W. Soft tissue reconstruction of megaprostheses using a trevira tube. Clin Orthop Relat Res. 2001;393:264–271.CrossRef
18.
go back to reference Gradl G, de Witte PB, Evans BT, Hornicek F, Raskin K, Ring D. Surgical site infection in orthopaedic oncology. J Bone Joint Surg Am. 2014;96:223–230.CrossRefPubMed Gradl G, de Witte PB, Evans BT, Hornicek F, Raskin K, Ring D. Surgical site infection in orthopaedic oncology. J Bone Joint Surg Am. 2014;96:223–230.CrossRefPubMed
19.
go back to reference Grimer RJ, Chandrasekar CR, Carter SR, Abudu A, Tillman RM, Jeys L. Hindquarter amputation: is it still needed and what are the outcomes? Bone Joint J. 2013;95:127–131.CrossRefPubMed Grimer RJ, Chandrasekar CR, Carter SR, Abudu A, Tillman RM, Jeys L. Hindquarter amputation: is it still needed and what are the outcomes? Bone Joint J. 2013;95:127–131.CrossRefPubMed
20.
go back to reference Guo W, Li D, Tang X, Yang Y, Ji T. Reconstruction with modular hemipelvic prostheses for periacetabular tumor. Clin Orthp Relat Res. 2007;461:180–188. Guo W, Li D, Tang X, Yang Y, Ji T. Reconstruction with modular hemipelvic prostheses for periacetabular tumor. Clin Orthp Relat Res. 2007;461:180–188.
21.
go back to reference Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W, Gosheger G. Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials. 2007;28:2869–2875.CrossRefPubMed Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W, Gosheger G. Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials. 2007;28:2869–2875.CrossRefPubMed
22.
go back to reference Henderson ER, Groundland JS, Pala E, Dennis JA, Wooten R, Cheong D, Windhager R, Kotz RI, Mercuri M, Funovics PT, Hornicek FJ, Temple HT, Ruggieri P, Letson GD. Failure mode classification for tumor endoprostheses: retrospective review of five institutions and a literature review. J Bone Joint Surg Am. 2011;93:418–429.CrossRefPubMed Henderson ER, Groundland JS, Pala E, Dennis JA, Wooten R, Cheong D, Windhager R, Kotz RI, Mercuri M, Funovics PT, Hornicek FJ, Temple HT, Ruggieri P, Letson GD. Failure mode classification for tumor endoprostheses: retrospective review of five institutions and a literature review. J Bone Joint Surg Am. 2011;93:418–429.CrossRefPubMed
23.
go back to reference Hillmann A, Gosheger G, Hoffmann C, Ozaki T, Winkelmann W. Rotationplasty–surgical treatment modality after failed limb salvage procedure. Arch Orthop Trauma Surg. 2000;120:555–558.CrossRefPubMed Hillmann A, Gosheger G, Hoffmann C, Ozaki T, Winkelmann W. Rotationplasty–surgical treatment modality after failed limb salvage procedure. Arch Orthop Trauma Surg. 2000;120:555–558.CrossRefPubMed
24.
go back to reference Jaiswal PK, Aston WJ, Grimer RJ, Abudu A, Carter S, Blunn G, Briggs TW, Cannon S. Peri-acetabular resection and endoprosthetic reconstruction for tumours of the acetabulum. J Bone Joint Surg Br. 2008;90:1222–1227.CrossRefPubMed Jaiswal PK, Aston WJ, Grimer RJ, Abudu A, Carter S, Blunn G, Briggs TW, Cannon S. Peri-acetabular resection and endoprosthetic reconstruction for tumours of the acetabulum. J Bone Joint Surg Br. 2008;90:1222–1227.CrossRefPubMed
25.
go back to reference Jansen JA, van de Sande MA, Dijkstra PD. Poor long-term clinical results of saddle prosthesis after resection of periacetabular tumors. Clin Orthop Relat Res. 2013;471:324–331.CrossRefPubMed Jansen JA, van de Sande MA, Dijkstra PD. Poor long-term clinical results of saddle prosthesis after resection of periacetabular tumors. Clin Orthop Relat Res. 2013;471:324–331.CrossRefPubMed
26.
go back to reference Keurentjes JC, Fiocco M, Schreurs BW, Pijls BG, Nouta KA, Nelissen RG. Revision surgery is overestimated in hip replacement. Bone Joint Res. 2012;1:258–262.CrossRefPubMedPubMedCentral Keurentjes JC, Fiocco M, Schreurs BW, Pijls BG, Nouta KA, Nelissen RG. Revision surgery is overestimated in hip replacement. Bone Joint Res. 2012;1:258–262.CrossRefPubMedPubMedCentral
27.
go back to reference Levine BR, Della Valle CJ, Deirmengian CA, Breien KM, Weeden SH, Sporer SM, Paprosky WG. The use of a tripolar articulation in revision total hip arthroplasty: a minimum of 24 months’ follow-up. J Arthroplasty. 2008;23:1182–1188.CrossRefPubMed Levine BR, Della Valle CJ, Deirmengian CA, Breien KM, Weeden SH, Sporer SM, Paprosky WG. The use of a tripolar articulation in revision total hip arthroplasty: a minimum of 24 months’ follow-up. J Arthroplasty. 2008;23:1182–1188.CrossRefPubMed
28.
go back to reference Menendez LR, Ahlmann ER, Falkinstein Y, Allison DC. Periacetabular reconstruction with a new endoprosthesis. Clin Orthop Relat Res. 2009;467:2831–2837.CrossRefPubMedPubMedCentral Menendez LR, Ahlmann ER, Falkinstein Y, Allison DC. Periacetabular reconstruction with a new endoprosthesis. Clin Orthop Relat Res. 2009;467:2831–2837.CrossRefPubMedPubMedCentral
29.
go back to reference Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Stat Med. 2007;26:2389–2430.CrossRefPubMed Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Stat Med. 2007;26:2389–2430.CrossRefPubMed
30.
go back to reference Rodriguez JA, Rathod PA. Large diameter heads: is bigger always better? J Bone Joint Surg Br. 2012;94:52–54.CrossRefPubMed Rodriguez JA, Rathod PA. Large diameter heads: is bigger always better? J Bone Joint Surg Br. 2012;94:52–54.CrossRefPubMed
31.
go back to reference Sys G, Uyttendaele D, Poffyn B, Verdonk R, Verstraete L. Extracorporeally irradiated autografts in pelvic reconstruction after malignant tumour resection. Int Orthop. 2002;26:174–178.CrossRefPubMedPubMedCentral Sys G, Uyttendaele D, Poffyn B, Verdonk R, Verstraete L. Extracorporeally irradiated autografts in pelvic reconstruction after malignant tumour resection. Int Orthop. 2002;26:174–178.CrossRefPubMedPubMedCentral
32.
go back to reference Wirbel RJ, Schulte M, Mutschler WE. Surgical treatment of pelvic sarcomas: oncologic and functional outcome. Clin Orthop Relat Res. 2001;390:190–205.CrossRef Wirbel RJ, Schulte M, Mutschler WE. Surgical treatment of pelvic sarcomas: oncologic and functional outcome. Clin Orthop Relat Res. 2001;390:190–205.CrossRef
33.
go back to reference Witte D, Bernd L, Bruns J, Gosheger G, Hardes J, Hartwig E, Lehner B, Melcher I, Mutschler W, Schulte M, Tunn PU, Wozniak W, Zahlten-Hinguranage A, Zeifang F. Limb-salvage reconstruction with MUTARS hemipelvic endoprosthesis: a prospective multicenter study. Eur J Surg Oncol. 2009;35:1318–1325.CrossRefPubMed Witte D, Bernd L, Bruns J, Gosheger G, Hardes J, Hartwig E, Lehner B, Melcher I, Mutschler W, Schulte M, Tunn PU, Wozniak W, Zahlten-Hinguranage A, Zeifang F. Limb-salvage reconstruction with MUTARS hemipelvic endoprosthesis: a prospective multicenter study. Eur J Surg Oncol. 2009;35:1318–1325.CrossRefPubMed
Metadata
Title
LUMiC® Endoprosthetic Reconstruction After Periacetabular Tumor Resection: Short-term Results
Authors
Michaël P. A. Bus, MSc
Andrzej Szafranski, MD, PhD
Simen Sellevold, MD
Tomasz Goryn, MD, PhD
Paul C. Jutte, MD, PhD
Jos A. M. Bramer, MD, PhD
M. Fiocco, PhD
Arne Streitbürger, MD, PhD
Daniel Kotrych, MD, PhD
Michiel A. J. van de Sande, MD, PhD
P. D. Sander Dijkstra, MD, PhD
Publication date
01-03-2017
Publisher
Springer US
Published in
Clinical Orthopaedics and Related Research® / Issue 3/2017
Print ISSN: 0009-921X
Electronic ISSN: 1528-1132
DOI
https://doi.org/10.1007/s11999-016-4805-4

Other articles of this Issue 3/2017

Clinical Orthopaedics and Related Research® 3/2017 Go to the issue

Symposium: 2015 Meetings of the Musculoskeletal Tumor Society and the International Society of Limb Salvage

What Is the Expected Learning Curve in Computer-assisted Navigation for Bone Tumor Resection?