Skip to main content
Top
Published in: Clinical Orthopaedics and Related Research® 1/2017

01-01-2017 | Symposium: 2016 Knee Society Proceedings

The John N. Insall Award: Do Intraarticular Injections Increase the Risk of Infection After TKA?

Authors: Nicholas A. Bedard, MD, Andrew J. Pugely, MD, Jacob M. Elkins, MD, PhD, Kyle R. Duchman, MD, Robert W. Westermann, MD, Steve S. Liu, MD, Yubo Gao, PhD, John J. Callaghan, MD

Published in: Clinical Orthopaedics and Related Research® | Issue 1/2017

Login to get access

Abstract

Background

Infection after total knee arthroplasty (TKA) can result in disastrous consequences. Previous research regarding injections and risk of TKA infection have produced conflicting results and in general have been limited by small cohort size.

Questions/purposes

The purpose of this study was to evaluate if intraarticular injection before TKA increases the risk of postoperative infection and to identify if time between injection and TKA affect the risk of TKA infection.

Methods

The Humana data set was reviewed from 2007 to 2014 for all patients who received a knee injection before TKA. Current Procedural Terminology (CPT) codes and laterality modifiers were used to identify patients who underwent knee injection followed by ipsilateral TKA. Postoperative infection within 6 months of TKA was identified using International Classification of Diseases, 9th Revision/CPT codes that represent two infectious endpoints: any postoperative surgical site infection (encompasses all severities of infection) and operative intervention for TKA infection (surrogate for deep TKA infection). The injection cohort was stratified into 12 subgroups by monthly intervals out to 12 months corresponding to the number of months that had elapsed between injection and TKA. Risk of postoperative infection was compared between the injection and no injection cohorts. In total, 29,603 TKAs (35%) had an injection in the ipsilateral knee before the TKA procedure and 54,081 TKA cases (65%) did not. The PearlDiver database does not currently support line-by-line output of patient data, and so we were unable to perform a multivariate analysis to determine whether other important factors may have varied between the study groups that might have had a differential influence on the risk of infection between those groups. However, the Charlson Comorbidity index was no different between the injection and no injection cohorts (2.9 for both) suggesting similar comorbidity profiles between the groups.

Results

The proportion of TKAs developing any postoperative infection was higher among TKAs that received an injection before TKA than in those that did not (4.4% versus 3.6%; odds ratio [OR], 1.23; 95% confidence interval [CI], 1.15-1.33; p < 0.001). Likewise, the proportion of TKAs developing infection resulting in return to the operating room after TKA was also higher among TKAs that received an injection before TKA than those that did not (1.49% versus 1.04%; OR, 1.4; 95% CI, 1.3-1.63; p < 0.001). Month-by-month analysis of time between injection and TKA revealed the odds of any postoperative infection remained higher for the injection cohort out to a duration of 6 months between injection and TKA (ORs ranged 1.23 to 1.46 when 1-6 months between injection and TKA; p < 0.05 for all) as did the odds of operative intervention for TKA infection when injection occurred within 7 months of TKA (OR ranged from 1.38 to 1.88 when 1-7 months between injection and TKA; p < 0.05 for all). When the duration between injection and TKA was longer than 6 or 7 months, the ORs were no longer elevated at these endpoints, respectively.

Conclusions

Injection before TKA was associated with a higher risk of postoperative infection and appears to be time-dependent with closer proximity between injection and TKA having increased odds of infection. Further research is needed to better evaluate the risk injection before TKA poses for TKA infection; a more definitive relationship could be established with a multivariate analysis to control for other known risk factors for TKA infection.

Level of Evidence

Level III, therapeutic study.
Literature
1.
go back to reference Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. Intraarticular corticosteroid for treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2006;2:CD005328. Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. Intraarticular corticosteroid for treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2006;2:CD005328.
2.
go back to reference Blom AW, Brown J, Taylor AH, Pattison G, Whitehouse S, Bannister GC. Infection after total knee arthroplasty. J Bone Joint Surg Br. 2004;86:688–691.CrossRefPubMed Blom AW, Brown J, Taylor AH, Pattison G, Whitehouse S, Bannister GC. Infection after total knee arthroplasty. J Bone Joint Surg Br. 2004;86:688–691.CrossRefPubMed
3.
go back to reference Cancienne JM, Werner BC, Luetkemeyer LM, Browne JA. Does timing of previous intra-articular steroid injection affect the post-operative rate of infection in total knee arthroplasty? J Arthroplasty. 2015;30:1879–1882.CrossRefPubMed Cancienne JM, Werner BC, Luetkemeyer LM, Browne JA. Does timing of previous intra-articular steroid injection affect the post-operative rate of infection in total knee arthroplasty? J Arthroplasty. 2015;30:1879–1882.CrossRefPubMed
4.
go back to reference Desai A, Ramankutty S, Board T, Raut V. Does intraarticular steroid infiltration increase the rate of infection in subsequent total knee replacements? Knee. 2009;16:262–264.CrossRefPubMed Desai A, Ramankutty S, Board T, Raut V. Does intraarticular steroid infiltration increase the rate of infection in subsequent total knee replacements? Knee. 2009;16:262–264.CrossRefPubMed
5.
go back to reference Horne G, Devane P, Davidson A, Adams K, Purdie G. The influence of steroid injections on the incidence of infection following total knee arthroplasty. N Z Med J. 2008;121:U2896.PubMed Horne G, Devane P, Davidson A, Adams K, Purdie G. The influence of steroid injections on the incidence of infection following total knee arthroplasty. N Z Med J. 2008;121:U2896.PubMed
6.
go back to reference Jamsen E, Huhtala H, Puolakka T, Moilanen T. Risk factors for infection after knee arthroplasty: a register-based analysis of 43,149 cases. J Bone Joint Surg Am. 2009;91:38–47.CrossRefPubMed Jamsen E, Huhtala H, Puolakka T, Moilanen T. Risk factors for infection after knee arthroplasty: a register-based analysis of 43,149 cases. J Bone Joint Surg Am. 2009;91:38–47.CrossRefPubMed
7.
go back to reference Jamsen E, Varonen M, Huhtala H, Lehto MU, Lumio J, Konttinen YT, Moilanen T. Incidence of prosthetic joint infections after primary knee arthroplasty. J Arthroplasty. 2010;25:87–92.CrossRefPubMed Jamsen E, Varonen M, Huhtala H, Lehto MU, Lumio J, Konttinen YT, Moilanen T. Incidence of prosthetic joint infections after primary knee arthroplasty. J Arthroplasty. 2010;25:87–92.CrossRefPubMed
8.
go back to reference Jevsevar DS, Brown GA, Jones DL, Matzkin EG, Manner PA, Mooar P, Schousboe JT, Stovitz S, Sanders JO, Bozic KJ, Goldberg MJ, Martin WR 3rd, Cummins DS, Donnelly P, Woznica A, Gross L. The American Academy of Orthopaedic Surgeons evidence-based guideline on: treatment of osteoarthritis of the knee, 2nd edition. J Bone Joint Surg Am. 2013;95:1885–1886.PubMed Jevsevar DS, Brown GA, Jones DL, Matzkin EG, Manner PA, Mooar P, Schousboe JT, Stovitz S, Sanders JO, Bozic KJ, Goldberg MJ, Martin WR 3rd, Cummins DS, Donnelly P, Woznica A, Gross L. The American Academy of Orthopaedic Surgeons evidence-based guideline on: treatment of osteoarthritis of the knee, 2nd edition. J Bone Joint Surg Am. 2013;95:1885–1886.PubMed
9.
go back to reference Joshy S, Thomas B, Gogi N, Modi A, Singh BK. Effect of intra-articular steroids on deep infections following total knee arthroplasty. Int Orthop. 2006;30:91–93.CrossRefPubMedPubMedCentral Joshy S, Thomas B, Gogi N, Modi A, Singh BK. Effect of intra-articular steroids on deep infections following total knee arthroplasty. Int Orthop. 2006;30:91–93.CrossRefPubMedPubMedCentral
10.
go back to reference Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM, Wolfe F. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58:26–35.CrossRefPubMed Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM, Wolfe F. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58:26–35.CrossRefPubMed
11.
go back to reference Marsland D, Mumith A, Barlow IW. Systematic review: the safety of intra-articular corticosteroid injection prior to total knee arthroplasty. Knee. 2014;21:6–11.CrossRefPubMed Marsland D, Mumith A, Barlow IW. Systematic review: the safety of intra-articular corticosteroid injection prior to total knee arthroplasty. Knee. 2014;21:6–11.CrossRefPubMed
12.
go back to reference Minnema B, Vearncombe M, Augustin A, Gollish J, Simor AE. Risk factors for surgical-site infection following primary total knee arthroplasty. Infect Control Hosp Epidemiol. 2004;25:477–480.CrossRefPubMed Minnema B, Vearncombe M, Augustin A, Gollish J, Simor AE. Risk factors for surgical-site infection following primary total knee arthroplasty. Infect Control Hosp Epidemiol. 2004;25:477–480.CrossRefPubMed
13.
go back to reference Murphy MV, Du D, Hua W, Cortez KJ, Butler MG, Davis RL, DeCoster T, Johnson L, Li L, Nakasato C, Nordin JD, Ramesh M, Schum M, Von Worley A, Zinderman C, Platt R, Klompas M. The utility of claims data for infection surveillance following anterior cruciate ligament reconstruction. Infect Control Hosp Epidemiol. 2014;35:652–659.CrossRefPubMed Murphy MV, Du D, Hua W, Cortez KJ, Butler MG, Davis RL, DeCoster T, Johnson L, Li L, Nakasato C, Nordin JD, Ramesh M, Schum M, Von Worley A, Zinderman C, Platt R, Klompas M. The utility of claims data for infection surveillance following anterior cruciate ligament reconstruction. Infect Control Hosp Epidemiol. 2014;35:652–659.CrossRefPubMed
14.
go back to reference Nero DC, Lipp MJ, Callahan MA. The financial impact of hospital-acquired conditions. J Health Care Finance. 2012;38:40–49.PubMed Nero DC, Lipp MJ, Callahan MA. The financial impact of hospital-acquired conditions. J Health Care Finance. 2012;38:40–49.PubMed
15.
go back to reference Papavasiliou AV, Isaac DL, Marimuthu R, Skyrme A, Armitage A. Infection in knee replacements after previous injection of intra-articular steroid. J Bone Joint Surg Br. 2006;88:321–323.CrossRefPubMed Papavasiliou AV, Isaac DL, Marimuthu R, Skyrme A, Armitage A. Infection in knee replacements after previous injection of intra-articular steroid. J Bone Joint Surg Br. 2006;88:321–323.CrossRefPubMed
16.
go back to reference Rasouli MR, Restrepo C, Maltenfort MG, Purtill JJ, Parvizi J. Risk factors for surgical site infection following total joint arthroplasty. J Bone Joint Surg Am. 2014;96:e158.CrossRefPubMed Rasouli MR, Restrepo C, Maltenfort MG, Purtill JJ, Parvizi J. Risk factors for surgical site infection following total joint arthroplasty. J Bone Joint Surg Am. 2014;96:e158.CrossRefPubMed
17.
go back to reference Singh JA, Kundukulam JA, Bhandari M. A systematic review of validated methods for identify orthopedic implant removal and revision using administrative data. Pharmaoepidemiol Drug Saf. 2012;21(Suppl 1):265–273.CrossRef Singh JA, Kundukulam JA, Bhandari M. A systematic review of validated methods for identify orthopedic implant removal and revision using administrative data. Pharmaoepidemiol Drug Saf. 2012;21(Suppl 1):265–273.CrossRef
18.
go back to reference Willis-Owen CA, Konyves A, Martin DK. Factors affecting the incidence of infection in hip and knee replacement: an analysis of 5277 cases. J Bone Joint Surg Br. 2010;92:1128–1133.CrossRefPubMed Willis-Owen CA, Konyves A, Martin DK. Factors affecting the incidence of infection in hip and knee replacement: an analysis of 5277 cases. J Bone Joint Surg Br. 2010;92:1128–1133.CrossRefPubMed
19.
go back to reference Wilson MG, Kelley K, Thornhill TS. Infection as a complication of total knee-replacement arthroplasty. Risk factors and treatment in sixty-seven cases. J Bone Joint Surg Am. 1990;72:878–883.CrossRefPubMed Wilson MG, Kelley K, Thornhill TS. Infection as a complication of total knee-replacement arthroplasty. Risk factors and treatment in sixty-seven cases. J Bone Joint Surg Am. 1990;72:878–883.CrossRefPubMed
Metadata
Title
The John N. Insall Award: Do Intraarticular Injections Increase the Risk of Infection After TKA?
Authors
Nicholas A. Bedard, MD
Andrew J. Pugely, MD
Jacob M. Elkins, MD, PhD
Kyle R. Duchman, MD
Robert W. Westermann, MD
Steve S. Liu, MD
Yubo Gao, PhD
John J. Callaghan, MD
Publication date
01-01-2017
Publisher
Springer US
Published in
Clinical Orthopaedics and Related Research® / Issue 1/2017
Print ISSN: 0009-921X
Electronic ISSN: 1528-1132
DOI
https://doi.org/10.1007/s11999-016-4757-8

Other articles of this Issue 1/2017

Clinical Orthopaedics and Related Research® 1/2017 Go to the issue