Skip to main content
Top
Published in: Current Urology Reports 4/2017

01-04-2017 | Endourology (P Mucksavage, Section Editor)

To Dust or Not To Dust: a Systematic Review of Ureteroscopic Laser Lithotripsy Techniques

Authors: Javier E. Santiago, Adam B. Hollander, Samit D. Soni, Richard E. Link, Wesley A. Mayer

Published in: Current Urology Reports | Issue 4/2017

Login to get access

Abstract

Purpose of Review

This review discusses factors affecting outcomes during ureteroscopy (URS) with laser lithotripsy (LL), explores specific clinical challenges to the efficacy of URS LL, and reviews the available literature comparing the dusting and basketing approaches to URS LL.

Recent Findings

Data show high stone-free rates with URS LL in all locations of the urinary tract and with all stone types and sizes. Recent data comparing LL with dusting versus basketing suggest higher rates of residual fragments with dusting but less utilization of ureteral access sheaths and potentially shorter operative times. Differences in postoperative complications, re-intervention rates, and other outcome parameters are not yet clear. Interpretation of published data is problematic due to variability in laser settings, follow-up intervals, and definitions for what constitutes stone-free status.

Summary

URS has overtaken shock wave lithotripsy in the last decade as the most commonly utilized surgical approach for treating urolithiasis. Two primary strategies have emerged as the most common techniques for performing LL: dusting and basketing. There is a relative paucity of data examining the difference in these techniques as it pertains to peri-operative outcomes and overall success. We attempt to synthesize this data into evidence-based and experience-based recommendations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Seeger AR, Rittenberg MH, Bagley DH. Ureteropyeloscopic removal of ureteral calculi. J Urol. 1988;139(6):1180–3.PubMed Seeger AR, Rittenberg MH, Bagley DH. Ureteropyeloscopic removal of ureteral calculi. J Urol. 1988;139(6):1180–3.PubMed
2.
go back to reference Harmon W, Sershon P, Blute M, et al. Ureteroscopy: current practice and long-term complications. J Urol. 1997;157(1):28–32.CrossRefPubMed Harmon W, Sershon P, Blute M, et al. Ureteroscopy: current practice and long-term complications. J Urol. 1997;157(1):28–32.CrossRefPubMed
3.
go back to reference Zhong P, Preminger G. Mechanisms of differing stone fragility in extracorporeal shock wave lithotripsy. J Endourol. 1994;8(4):263–8.CrossRefPubMed Zhong P, Preminger G. Mechanisms of differing stone fragility in extracorporeal shock wave lithotripsy. J Endourol. 1994;8(4):263–8.CrossRefPubMed
4.
go back to reference Brownlee N, Foster M, Griffith DP, Carlton Jr CE. Controlled inversion therapy: an adjunct to the elimination of gravity-dependent fragments following extracorporeal shock wave lithotripsy. J Urol. 1990;143(6):1096–8.PubMed Brownlee N, Foster M, Griffith DP, Carlton Jr CE. Controlled inversion therapy: an adjunct to the elimination of gravity-dependent fragments following extracorporeal shock wave lithotripsy. J Urol. 1990;143(6):1096–8.PubMed
5.
go back to reference Pace KT, Tariq N, Dyer SJ, Weir MJRJDAH. Mechanical percussion, inversion and diuresis for residual lower pole fragments after shock wave lithotripsy: a prospective, single blind, randomized controlled trial. J Urol. 2001;166(6):2065–71.CrossRefPubMed Pace KT, Tariq N, Dyer SJ, Weir MJRJDAH. Mechanical percussion, inversion and diuresis for residual lower pole fragments after shock wave lithotripsy: a prospective, single blind, randomized controlled trial. J Urol. 2001;166(6):2065–71.CrossRefPubMed
6.
go back to reference Chiong E, Hwee ST, Kay LM, Liang S, Kamaraj R, Esuvaranathan K. Randomized controlled study of mechanical percussion, diuresis, and inversion therapy to assist passage of lower pole renal calculi after shock wave lithotripsy. Urology. 2005;65(6):1070–4.CrossRefPubMed Chiong E, Hwee ST, Kay LM, Liang S, Kamaraj R, Esuvaranathan K. Randomized controlled study of mechanical percussion, diuresis, and inversion therapy to assist passage of lower pole renal calculi after shock wave lithotripsy. Urology. 2005;65(6):1070–4.CrossRefPubMed
7.
go back to reference Matlaga BR, Lansen JP, Meckley LM, Byrne TW, Lingeman JE. A systematic review and meta-analysis of randomized. Contrl Trials J Urol. 2012;188(1):130–7. Matlaga BR, Lansen JP, Meckley LM, Byrne TW, Lingeman JE. A systematic review and meta-analysis of randomized. Contrl Trials J Urol. 2012;188(1):130–7.
8.
go back to reference Pearle MS, Lingeman JE, Leveillee R, Kuo R, Preminger GM, et al. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J Urol. 2005;173(6):2005–9.CrossRefPubMed Pearle MS, Lingeman JE, Leveillee R, Kuo R, Preminger GM, et al. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J Urol. 2005;173(6):2005–9.CrossRefPubMed
9.
go back to reference Pearle MS, Nadler R, Bercowsky E, Chen C, et al. Prospective randomized trial comparing shock wave lithotripsy and ureteroscopy for management of distal ureteral calculi. J Urol. 2001;166(4):1255–60.CrossRefPubMed Pearle MS, Nadler R, Bercowsky E, Chen C, et al. Prospective randomized trial comparing shock wave lithotripsy and ureteroscopy for management of distal ureteral calculi. J Urol. 2001;166(4):1255–60.CrossRefPubMed
10.
go back to reference Salem HK. A prospective randomized study comparing shock wave lithotripsy and semirigid ureteroscopy for the management of proximal ureteral calculi. J Urol. 2009;74(6):1216–21.CrossRef Salem HK. A prospective randomized study comparing shock wave lithotripsy and semirigid ureteroscopy for the management of proximal ureteral calculi. J Urol. 2009;74(6):1216–21.CrossRef
11.
go back to reference Nelson CP, Pace KT, Pais VM, Pearle MS, Preminger GM. American Urological Association (AUA) guideline surgical management of stones: American Urological Association Surgical Management 2016; April:1–50. Nelson CP, Pace KT, Pais VM, Pearle MS, Preminger GM. American Urological Association (AUA) guideline surgical management of stones: American Urological Association Surgical Management 2016; April:1–50.
12.
go back to reference Humphreys MR, Miller NL, Williams Jr JC, Evan AP, Munch LC, Lingeman JE. A new world revealed: early experience with digital ureteroscopy. J Urol. 2008;179(3):970–5.CrossRefPubMed Humphreys MR, Miller NL, Williams Jr JC, Evan AP, Munch LC, Lingeman JE. A new world revealed: early experience with digital ureteroscopy. J Urol. 2008;179(3):970–5.CrossRefPubMed
13.
go back to reference Somani BK, Al-Qahtani SM, de Medina SD, Traxer O. Outcomes of flexible ureterorenoscopy and laser fragmentation for renal stones: comparison between digital and conventional ureteroscope. Urology. 2013;82(5):1017–9.CrossRefPubMed Somani BK, Al-Qahtani SM, de Medina SD, Traxer O. Outcomes of flexible ureterorenoscopy and laser fragmentation for renal stones: comparison between digital and conventional ureteroscope. Urology. 2013;82(5):1017–9.CrossRefPubMed
14.
go back to reference Oberlin DT, Flum AS, Bachrach L, Matulewicz RS, Flury SC. Contemporary surgical trends in the management of upper tract calculi. J Urol. 2015;193(3):880–4.CrossRefPubMed Oberlin DT, Flum AS, Bachrach L, Matulewicz RS, Flury SC. Contemporary surgical trends in the management of upper tract calculi. J Urol. 2015;193(3):880–4.CrossRefPubMed
15.
go back to reference Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T. EUA Guidelines on Interventional Treatment for Urolithiasis. 2016;69(3)475–82. Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T. EUA Guidelines on Interventional Treatment for Urolithiasis. 2016;69(3)475–82.
16.
go back to reference Ziemba JB, Matlaga BR. Understanding the costs of flexible ureteroscopy. Minerva Urol Nefrol. 2016. Ziemba JB, Matlaga BR. Understanding the costs of flexible ureteroscopy. Minerva Urol Nefrol. 2016.
17.
go back to reference Tosoian JJ, Ludwig W, Sopko N, Mullins JK, Matlaga BR. The effect of repair costs on the profitability of a ureteroscopy program. J Endourol. 2015;29(4):406–9.CrossRefPubMed Tosoian JJ, Ludwig W, Sopko N, Mullins JK, Matlaga BR. The effect of repair costs on the profitability of a ureteroscopy program. J Endourol. 2015;29(4):406–9.CrossRefPubMed
18.
go back to reference Carey RI, Martin CJ, Knego JR. Prospective evaluation of refurbished flexible ureteroscope durability seen in a large public tertiary care center with multiple surgeons. Urology. 2014;84(1):42–5.CrossRefPubMed Carey RI, Martin CJ, Knego JR. Prospective evaluation of refurbished flexible ureteroscope durability seen in a large public tertiary care center with multiple surgeons. Urology. 2014;84(1):42–5.CrossRefPubMed
19.
go back to reference Shin RH, Lautz JM, Cabrera FJ, Shami CJ, Goldsmith ZG, Kuntz NJ, et al. Evaluation of novel ball-tip holmium laser fiber: impact on ureteroscope performance and fragmentation efficiency. J Endourol. 2016;30(2):189–94.CrossRefPubMed Shin RH, Lautz JM, Cabrera FJ, Shami CJ, Goldsmith ZG, Kuntz NJ, et al. Evaluation of novel ball-tip holmium laser fiber: impact on ureteroscope performance and fragmentation efficiency. J Endourol. 2016;30(2):189–94.CrossRefPubMed
20.
go back to reference Doizi S, Kamphuis G, Giusti G, Andreassen KH, Knoll T, Osther PJ, et al. First clinical evaluation of a new single-use flexible ureteroscope (LithoVue): a European prospective multicentric feasibility study. World J Urol. 2016. Doizi S, Kamphuis G, Giusti G, Andreassen KH, Knoll T, Osther PJ, et al. First clinical evaluation of a new single-use flexible ureteroscope (LithoVue): a European prospective multicentric feasibility study. World J Urol. 2016.
21.
go back to reference Leveillee RJ, Kelly EF. Impressive performance: new disposable digital ureteroscope allows for extreme lower pole access and use of 365 mum holmium laser fiber. J Endourol Case Rep. 2016;2(1):114–6.CrossRefPubMedPubMedCentral Leveillee RJ, Kelly EF. Impressive performance: new disposable digital ureteroscope allows for extreme lower pole access and use of 365 mum holmium laser fiber. J Endourol Case Rep. 2016;2(1):114–6.CrossRefPubMedPubMedCentral
22.
go back to reference Torricelli FC, Marchini GS, Pedro RN, Monga M. Ureteroscopy for management of stone disease: an up to date on surgical technique and disposable devices. Minerva Urol Nefrol. 2016;68(6):516–26.PubMed Torricelli FC, Marchini GS, Pedro RN, Monga M. Ureteroscopy for management of stone disease: an up to date on surgical technique and disposable devices. Minerva Urol Nefrol. 2016;68(6):516–26.PubMed
23.
go back to reference Vij DR, Mahesh K. Medical applications of laser. In: Technology & Engineering. Springer: Science & Business Media; 2013. Vij DR, Mahesh K. Medical applications of laser. In: Technology & Engineering. Springer: Science & Business Media; 2013.
24.
go back to reference Brisbane W, Bailey MR, Sorensen MD. An overview of kidney stone imaging techniques. Nat Rev Urol. 2016;13:654–62.CrossRefPubMed Brisbane W, Bailey MR, Sorensen MD. An overview of kidney stone imaging techniques. Nat Rev Urol. 2016;13:654–62.CrossRefPubMed
25.
go back to reference Perez Castro E, Osther PJ, Jinga V, et al. Differences in ureteroscopic stone treatment and outcomes for distal, mid-, proximal, or multiple ureteral locations: the Clinical Research Office of the Endourological Society ureteroscopy global study. Eur Urol. 2014;66:102.CrossRefPubMed Perez Castro E, Osther PJ, Jinga V, et al. Differences in ureteroscopic stone treatment and outcomes for distal, mid-, proximal, or multiple ureteral locations: the Clinical Research Office of the Endourological Society ureteroscopy global study. Eur Urol. 2014;66:102.CrossRefPubMed
26.
go back to reference Hyams E, Monga M, Pearle MS, et al. A prospective, multi-institutional study of flexible ureteroscopy for proximal ureteral stones smaller than 2 cm. J Urol. 2015;193:165.CrossRefPubMed Hyams E, Monga M, Pearle MS, et al. A prospective, multi-institutional study of flexible ureteroscopy for proximal ureteral stones smaller than 2 cm. J Urol. 2015;193:165.CrossRefPubMed
27.
go back to reference Mi Y, Ren K, Huang Y, et al. Flexible Ureterorenoscopy (F-URS) with Holmium laser versus Extracorporeal Shock Wave Lithotripsy (ESWL) for treatment of renal stone <2 cm: a meta-analysis. Urolothiasis. 2016;44:353–65.CrossRef Mi Y, Ren K, Huang Y, et al. Flexible Ureterorenoscopy (F-URS) with Holmium laser versus Extracorporeal Shock Wave Lithotripsy (ESWL) for treatment of renal stone <2 cm: a meta-analysis. Urolothiasis. 2016;44:353–65.CrossRef
28.
go back to reference Ito H, Sakamaki K, Matsuzaki J, et al. Development and validation of a nomogram for predicting stone-free status after flexible ureteroscopy for renal stones. BJU Int. 2014;115:446–551.CrossRefPubMed Ito H, Sakamaki K, Matsuzaki J, et al. Development and validation of a nomogram for predicting stone-free status after flexible ureteroscopy for renal stones. BJU Int. 2014;115:446–551.CrossRefPubMed
29.
go back to reference Bryniarski P, Paradysz A, Zyczkowski M, et al. A randomized controlled study to analyze the safety and efficacy of percutaneous nephrolithotripsy and retrograde intrarenal surgery in the management of renal stones more than 2 cm in diameter. J Endourol. 2012;26:52.CrossRefPubMed Bryniarski P, Paradysz A, Zyczkowski M, et al. A randomized controlled study to analyze the safety and efficacy of percutaneous nephrolithotripsy and retrograde intrarenal surgery in the management of renal stones more than 2 cm in diameter. J Endourol. 2012;26:52.CrossRefPubMed
30.
go back to reference Moses RA, Ghali FM, Vernon MPJ, Hyams E. Unplanned hospital return for infection following ureteroscopy- can we identify modifiable risk factors? J Urol. 2016;195(4):931–6.CrossRefPubMed Moses RA, Ghali FM, Vernon MPJ, Hyams E. Unplanned hospital return for infection following ureteroscopy- can we identify modifiable risk factors? J Urol. 2016;195(4):931–6.CrossRefPubMed
31.
go back to reference Aboumarzouk O, Monga M, Kata S, Traxer O, Somani M. Flexible ureteroscopy and laser lithotripsy for stones >2 cm: a systematic review and meta-analysis. J Endourol. 2012;26:10.CrossRef Aboumarzouk O, Monga M, Kata S, Traxer O, Somani M. Flexible ureteroscopy and laser lithotripsy for stones >2 cm: a systematic review and meta-analysis. J Endourol. 2012;26:10.CrossRef
32.
go back to reference Al-Qahtani SM, Gil-Deiz-de-Medina S, Traxer O. Predictors of clinical outcomes of flexible ureterorenoscopy with holmium laser for renal stone greater than 2 cm. Adv Urol. 2012, 543537 Al-Qahtani SM, Gil-Deiz-de-Medina S, Traxer O. Predictors of clinical outcomes of flexible ureterorenoscopy with holmium laser for renal stone greater than 2 cm. Adv Urol. 2012, 543537
33.
go back to reference Cohen J, Cohen S, Grasso M. Ureteropyeloscopic treatment of large, complex intrarenal and proximal ureteral calculi. BJU Int. 2013;111:E127–31.CrossRefPubMed Cohen J, Cohen S, Grasso M. Ureteropyeloscopic treatment of large, complex intrarenal and proximal ureteral calculi. BJU Int. 2013;111:E127–31.CrossRefPubMed
34.
go back to reference Hyams ES, Munver R, Bird VG, Uberoi J, Shah O. Flexible ureterorenoscopy and holmium laser lithotripsy for the management of renal stone burdens that measure 2 to 3 cm: a multi-institutional experience. J Endourol. 2010;24:1583–8.CrossRefPubMed Hyams ES, Munver R, Bird VG, Uberoi J, Shah O. Flexible ureterorenoscopy and holmium laser lithotripsy for the management of renal stone burdens that measure 2 to 3 cm: a multi-institutional experience. J Endourol. 2010;24:1583–8.CrossRefPubMed
35.
go back to reference Preminger G. Management of lower pole calculi: shock wave lithotripsy versus percutaneous nephrolithotomy versus flexible ureteroscopy. Urol Res. 2006;34:108–11.CrossRefPubMed Preminger G. Management of lower pole calculi: shock wave lithotripsy versus percutaneous nephrolithotomy versus flexible ureteroscopy. Urol Res. 2006;34:108–11.CrossRefPubMed
36.
go back to reference Sampaio FJ, Aragao AH. Inferior pole collecting system anatomy: its probable role in extracorporeal shock wave lithotripsy. J Urol. 1992;147(2):322–4.PubMed Sampaio FJ, Aragao AH. Inferior pole collecting system anatomy: its probable role in extracorporeal shock wave lithotripsy. J Urol. 1992;147(2):322–4.PubMed
37.
go back to reference Resorlu B, Oguz U, Resorlu EB, Oztuna D, Unsal A. The impact of pelvicaliceal anatomy on the success of retrograde intrarenal surgery in patients with lower pole renal stones. J Urol. 2012;79(1):61–6.CrossRef Resorlu B, Oguz U, Resorlu EB, Oztuna D, Unsal A. The impact of pelvicaliceal anatomy on the success of retrograde intrarenal surgery in patients with lower pole renal stones. J Urol. 2012;79(1):61–6.CrossRef
38.
go back to reference Singh BP et al. Retrograde intrarenal surgery vs extracorporeal shock wave lithotripsy for intermediate size inferior pole calculi: a prospective assessment of objective and subjective outcomes. Urology. 2014;83:1016–22.CrossRefPubMed Singh BP et al. Retrograde intrarenal surgery vs extracorporeal shock wave lithotripsy for intermediate size inferior pole calculi: a prospective assessment of objective and subjective outcomes. Urology. 2014;83:1016–22.CrossRefPubMed
39.
go back to reference El-Nahas AR, Ibrahim HM, Youssef RF, Sheir KZ. Flexible ureterorenoscopy versus extracorporeal shock wave lithotripsy for treatment of lower pole stones of 10–20 mm. BJU Int. 2012;110(6):898–902.CrossRefPubMed El-Nahas AR, Ibrahim HM, Youssef RF, Sheir KZ. Flexible ureterorenoscopy versus extracorporeal shock wave lithotripsy for treatment of lower pole stones of 10–20 mm. BJU Int. 2012;110(6):898–902.CrossRefPubMed
40.
go back to reference Ghani KR, Wolf Jr JS. What is the stone-free rate following flexible ureteroscopy for kidney stones? Nat Rev Urol. 2015;12(7):363.CrossRefPubMed Ghani KR, Wolf Jr JS. What is the stone-free rate following flexible ureteroscopy for kidney stones? Nat Rev Urol. 2015;12(7):363.CrossRefPubMed
41.
go back to reference Borghi L, Meschi T, Amato F, Briganti A, Novarini A, Giannini A. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J Urol. 1996;155(3):839–43.CrossRefPubMed Borghi L, Meschi T, Amato F, Briganti A, Novarini A, Giannini A. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J Urol. 1996;155(3):839–43.CrossRefPubMed
42.
go back to reference Curhan GC, Willett WC, Rimm EB, Stampfer MJ. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. NEJM. 1993;328:833–8.CrossRefPubMed Curhan GC, Willett WC, Rimm EB, Stampfer MJ. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. NEJM. 1993;328:833–8.CrossRefPubMed
44.
45.
go back to reference Molina WR, Marchini GS, Monga M, et al. Determinants of holmium:yttrium-aluminum-garnet laser time and energy during ureteroscopic laser lithotripsy. Endourol Stones. 2014;83(4):738–44. Molina WR, Marchini GS, Monga M, et al. Determinants of holmium:yttrium-aluminum-garnet laser time and energy during ureteroscopic laser lithotripsy. Endourol Stones. 2014;83(4):738–44.
46.
go back to reference Ackerman A, Chen T, Young B, Lipkin M, et al. The effect of variable pulse duration on stone communition, fiber tip degradation, and stone retropulsion in a “Dusting” model. J Urol. 2016;195(4S):e472–3.CrossRef Ackerman A, Chen T, Young B, Lipkin M, et al. The effect of variable pulse duration on stone communition, fiber tip degradation, and stone retropulsion in a “Dusting” model. J Urol. 2016;195(4S):e472–3.CrossRef
47.
go back to reference Schatloff O, Lindner U, Ramon J, Winkler H. Randomized trial of stone fragment active retrieval versus spontaneous passage during holmium laser lithotripsy for ureteral stones. J Urol. 2010;183:1031–5.CrossRefPubMed Schatloff O, Lindner U, Ramon J, Winkler H. Randomized trial of stone fragment active retrieval versus spontaneous passage during holmium laser lithotripsy for ureteral stones. J Urol. 2010;183:1031–5.CrossRefPubMed
48.
go back to reference Portis A, Laliberte M, Drake S, Rosenberg M, Bretzke C. Intraoperative fragment detection during percutaneous nephrolithotomy: evaluation of high magnification rotational fluoroscopy combined with aggressive nephroscopy. J Urol. 2006;175:162–5.CrossRefPubMed Portis A, Laliberte M, Drake S, Rosenberg M, Bretzke C. Intraoperative fragment detection during percutaneous nephrolithotomy: evaluation of high magnification rotational fluoroscopy combined with aggressive nephroscopy. J Urol. 2006;175:162–5.CrossRefPubMed
49.
go back to reference Rebuck DA, Macejko A, Bhalani V, Ramos P, Nadler RB. The natural history of renal stone fragments following ureteroscopy. Urology. 2011;77:564–8.CrossRefPubMed Rebuck DA, Macejko A, Bhalani V, Ramos P, Nadler RB. The natural history of renal stone fragments following ureteroscopy. Urology. 2011;77:564–8.CrossRefPubMed
50.
go back to reference Hussain M, Acher P, Penev B, Cynk M. Redefining the limits of flexible ureterorenoscopy. J Endourol. 2011;25:45–9.CrossRefPubMed Hussain M, Acher P, Penev B, Cynk M. Redefining the limits of flexible ureterorenoscopy. J Endourol. 2011;25:45–9.CrossRefPubMed
51.
go back to reference Cocuzza M et al. Outcomes of flexible ureteroscopic lithotripsy with holmium laser for upper urinary tract calculi. Int Braz J Urol. 2008;34:143–9.CrossRefPubMed Cocuzza M et al. Outcomes of flexible ureteroscopic lithotripsy with holmium laser for upper urinary tract calculi. Int Braz J Urol. 2008;34:143–9.CrossRefPubMed
52.
go back to reference Auge BK, Pietrow PK, Lallas CD, Raj GV, Santa-Cruz RW, Preminger GM. Ureteral access sheath provides protection against elevated renal pressures during routine flexible ureteroscopic stone manipulation. J Endourol. 2004;18(1):33–6.CrossRefPubMed Auge BK, Pietrow PK, Lallas CD, Raj GV, Santa-Cruz RW, Preminger GM. Ureteral access sheath provides protection against elevated renal pressures during routine flexible ureteroscopic stone manipulation. J Endourol. 2004;18(1):33–6.CrossRefPubMed
53.
go back to reference Zhong W, Leto G, Wang L, Zeng G. Systemic inflammatory response syndrome after flexible ureteroscopic lithotripsy: a study of risk factors. J Endourol. 2015;29(1):25–8.CrossRefPubMed Zhong W, Leto G, Wang L, Zeng G. Systemic inflammatory response syndrome after flexible ureteroscopic lithotripsy: a study of risk factors. J Endourol. 2015;29(1):25–8.CrossRefPubMed
54.
go back to reference Ng YH, Somani BK, Dennison A, Kata SG, Nabi G, Brown S. Irrigant flow and intrarenal pressure during flexible ureteroscopy: the effect of different access sheaths, working channel instruments, and hydrostatic pressure. J Endourol. 2010;24(12):1915–20.CrossRefPubMed Ng YH, Somani BK, Dennison A, Kata SG, Nabi G, Brown S. Irrigant flow and intrarenal pressure during flexible ureteroscopy: the effect of different access sheaths, working channel instruments, and hydrostatic pressure. J Endourol. 2010;24(12):1915–20.CrossRefPubMed
55.
go back to reference Kourambas J, Byrne RR, Preminger GM. Does a ureteral access sheath facilitate ureteroscopy? J Urol. 2001;165(3):789–93.CrossRefPubMed Kourambas J, Byrne RR, Preminger GM. Does a ureteral access sheath facilitate ureteroscopy? J Urol. 2001;165(3):789–93.CrossRefPubMed
56.
go back to reference Pietrow PK, Auge BK, Delvecchio FC, Silverstein AD, Weizer AZ, Albala DM, et al. Techniques to maximize flexible ureteroscope longevity. Urology. 2002;60(5):784–8.CrossRefPubMed Pietrow PK, Auge BK, Delvecchio FC, Silverstein AD, Weizer AZ, Albala DM, et al. Techniques to maximize flexible ureteroscope longevity. Urology. 2002;60(5):784–8.CrossRefPubMed
57.
go back to reference Berquet G, Prunel P, Verhoest G, Mathieu R, Bensalah K. The use of a ureteral access sheath does not improve stone-free rate after ureteroscopy for upper urinary tract stones. World J Urol. 2014;32:229–32.CrossRefPubMed Berquet G, Prunel P, Verhoest G, Mathieu R, Bensalah K. The use of a ureteral access sheath does not improve stone-free rate after ureteroscopy for upper urinary tract stones. World J Urol. 2014;32:229–32.CrossRefPubMed
58.
go back to reference L’Esperance JO, Ekeruo WO, Scales Jr CD, et al. Effect of ureteral access sheath on stone-free rates in patients undergoing ureteroscopic management of renal calculi. Urology. 2005;66:252–5. L’Esperance JO, Ekeruo WO, Scales Jr CD, et al. Effect of ureteral access sheath on stone-free rates in patients undergoing ureteroscopic management of renal calculi. Urology. 2005;66:252–5.
59.
go back to reference Lallas CD, Auge BK, Raj GV, et al. Laser Doppler flow- metric determination of ureteral blood flow after ureteral access sheath placement. J Endourol. 2002;16:583–90.CrossRefPubMed Lallas CD, Auge BK, Raj GV, et al. Laser Doppler flow- metric determination of ureteral blood flow after ureteral access sheath placement. J Endourol. 2002;16:583–90.CrossRefPubMed
60.
go back to reference • Traxer O, Thomas A. Prospective evaluation and classifi- cation of ureteral wall injuries resulting from insertion of a ure- teral access sheath during retrograde intrarenal surgery. J Urol. 2013;189:580–4. Large prospective study for renal stones treated by URS LL. With placement of a 12/14 Fr UAS. 46.5% had visible ureter damage on 4 point scale. Of these, 86% of which had mucosal injury and 10% with damage through mucosa to smooth muscle. Absence of pre-operative double-J stent placement was the greatest risk factor for ureteral injury.CrossRefPubMed • Traxer O, Thomas A. Prospective evaluation and classifi- cation of ureteral wall injuries resulting from insertion of a ure- teral access sheath during retrograde intrarenal surgery. J Urol. 2013;189:580–4. Large prospective study for renal stones treated by URS LL. With placement of a 12/14 Fr UAS. 46.5% had visible ureter damage on 4 point scale. Of these, 86% of which had mucosal injury and 10% with damage through mucosa to smooth muscle. Absence of pre-operative double-J stent placement was the greatest risk factor for ureteral injury.CrossRefPubMed
61.
go back to reference Delvecchio FC, Auge BK, Brizuela RM, et al. Assessment of stricture formation with the ureteral access sheath. Urology. 2003;61:518–22.CrossRefPubMed Delvecchio FC, Auge BK, Brizuela RM, et al. Assessment of stricture formation with the ureteral access sheath. Urology. 2003;61:518–22.CrossRefPubMed
62.
go back to reference Traxer O, Wendt-Nordahl G, de la Rosette JJ, et al. Differences in renal stone treatment and outcomes for patients treated either with or without the support of a ureteral access sheath: the clinical research office of the endourological society ureteroscopy global study. World J Urol. 2015;33:2137–44.CrossRefPubMedPubMedCentral Traxer O, Wendt-Nordahl G, de la Rosette JJ, et al. Differences in renal stone treatment and outcomes for patients treated either with or without the support of a ureteral access sheath: the clinical research office of the endourological society ureteroscopy global study. World J Urol. 2015;33:2137–44.CrossRefPubMedPubMedCentral
63.
go back to reference Morgan MSC, Antonelli JA, Pearle MS, et al. Use of an electronic medical record to assess patient-report morbidity following ureteroscopy. J Endourol. 2016;30(S1):S45–51.CrossRef Morgan MSC, Antonelli JA, Pearle MS, et al. Use of an electronic medical record to assess patient-report morbidity following ureteroscopy. J Endourol. 2016;30(S1):S45–51.CrossRef
64.
go back to reference Schuster TG, Hollenbeck BK, Faerber GJ, Wolf Jr JS. Ureteroscopic treatment of lower pole calculi: comparison of lithotripsy in situ and after displacement. J Urol. 2002;168:43–5.CrossRefPubMed Schuster TG, Hollenbeck BK, Faerber GJ, Wolf Jr JS. Ureteroscopic treatment of lower pole calculi: comparison of lithotripsy in situ and after displacement. J Urol. 2002;168:43–5.CrossRefPubMed
65.
go back to reference Chew BH et al. Dusting versus basketing during ureteroscopic lithotripsy—what is more efficacious? Interim analysis from a multi-centre prospective trial from the EDGE Research Consortium [abstract]. J Urol. 2015;193(4S):e261–2.CrossRef Chew BH et al. Dusting versus basketing during ureteroscopic lithotripsy—what is more efficacious? Interim analysis from a multi-centre prospective trial from the EDGE Research Consortium [abstract]. J Urol. 2015;193(4S):e261–2.CrossRef
66.
go back to reference Gamal W, Mamdouh A. Flexible URS Holmium laser stone dusting vs fragmentaion for <2 cm single renal stone [abstract]. J Urol. 2015;193(4S):e312–3.CrossRef Gamal W, Mamdouh A. Flexible URS Holmium laser stone dusting vs fragmentaion for <2 cm single renal stone [abstract]. J Urol. 2015;193(4S):e312–3.CrossRef
67.
go back to reference Tracey J, Gagin G, Ghani K, et al. Flexible ureteroscopy and laser lithotripsy for renal stones using ‘pop-dusting’: comparison of outcomes between traditional dusting settings versus ultra-high frequency settings [abstract]. J Urol. 2016;195(4S):e683.CrossRef Tracey J, Gagin G, Ghani K, et al. Flexible ureteroscopy and laser lithotripsy for renal stones using ‘pop-dusting’: comparison of outcomes between traditional dusting settings versus ultra-high frequency settings [abstract]. J Urol. 2016;195(4S):e683.CrossRef
68.
go back to reference •• Chew BH et al. Dusting versus basketing during ureteroscopic lithotripsy—what is more efficacious? final results from the EDGE Research Consortium [abstract]. J Urol. 2016;195(4S):e407. Prospective comparison of dusting to basketing for renal stones 5–20 mm. Initial data shows lower SFR and higher residual fragments in the dusting arm with similar post-operative complications and re-interventions. However, final data analysis is not yet available.CrossRef •• Chew BH et al. Dusting versus basketing during ureteroscopic lithotripsy—what is more efficacious? final results from the EDGE Research Consortium [abstract]. J Urol. 2016;195(4S):e407. Prospective comparison of dusting to basketing for renal stones 5–20 mm. Initial data shows lower SFR and higher residual fragments in the dusting arm with similar post-operative complications and re-interventions. However, final data analysis is not yet available.CrossRef
69.
go back to reference Candau C, Saussine C, Lang H, Roy C, Faure F, Jacqmin D. Natural history of residual renal stone fragments after ESWL. Eur Urol. 2000;37(1):18–22.CrossRefPubMed Candau C, Saussine C, Lang H, Roy C, Faure F, Jacqmin D. Natural history of residual renal stone fragments after ESWL. Eur Urol. 2000;37(1):18–22.CrossRefPubMed
70.
go back to reference Streem SB, Yost A, Mascha E. Clinical implications of clinically insignificant store fragments after extracorporeal shock wave lith- otripsy. J Urol. 1996;155(4):1186–90.CrossRefPubMed Streem SB, Yost A, Mascha E. Clinical implications of clinically insignificant store fragments after extracorporeal shock wave lith- otripsy. J Urol. 1996;155(4):1186–90.CrossRefPubMed
71.
go back to reference Osman MM, Alfano Y, Kamp S, et al. 5-Year follow-up of patients with clinically insignificant residual fragments after extracorporeal shock wave lithotripsy. Eur Urol. 2005;47(6):860–4.CrossRefPubMed Osman MM, Alfano Y, Kamp S, et al. 5-Year follow-up of patients with clinically insignificant residual fragments after extracorporeal shock wave lithotripsy. Eur Urol. 2005;47(6):860–4.CrossRefPubMed
72.
go back to reference El-Nahas AR, El-Assmy AM, Madbouly K, et al. Predictors of clinical significance of residual fragments after extracorporeal shock wave lithotripsy for renal stones. J Endourol. 2006;20(11):870–4.CrossRefPubMed El-Nahas AR, El-Assmy AM, Madbouly K, et al. Predictors of clinical significance of residual fragments after extracorporeal shock wave lithotripsy for renal stones. J Endourol. 2006;20(11):870–4.CrossRefPubMed
73.
go back to reference Khaitan A, Gupta NP, Hemal AK, et al. Post-ESWL, clinically insignificant residual stones: reality or myth? Urology. 2002;59(1):20–4.CrossRefPubMed Khaitan A, Gupta NP, Hemal AK, et al. Post-ESWL, clinically insignificant residual stones: reality or myth? Urology. 2002;59(1):20–4.CrossRefPubMed
74.
go back to reference Zanetti G, Seveso M, Montanari E, et al. Renal stone fragments following shock wave lithotripsy. J Urol. 1997;158(2):352–5.CrossRefPubMed Zanetti G, Seveso M, Montanari E, et al. Renal stone fragments following shock wave lithotripsy. J Urol. 1997;158(2):352–5.CrossRefPubMed
75.
go back to reference • Chew BH, Brotherhood HL, Sur RL, Humphreys MR. Natural history, complications and re-intervention rates of asymptomatic residual stone fragments after ureteroscopy: a report from the EDGE Research Consortium. J Urol. 2016;195(4):982–6. 232 patients with residual fragments >4 or <4 mm after URS LL for renal stones were evaluated for “stone events” and complications. Residual fragments >4 mm were more likely to grow (p<0.001), result in complications (p=0.039), and re-interventions (p=0.01). Subset analysis also suggests step-wise increase in morbidity with increasing residual fragment size >2 mm.CrossRefPubMed • Chew BH, Brotherhood HL, Sur RL, Humphreys MR. Natural history, complications and re-intervention rates of asymptomatic residual stone fragments after ureteroscopy: a report from the EDGE Research Consortium. J Urol. 2016;195(4):982–6. 232 patients with residual fragments >4 or <4 mm after URS LL for renal stones were evaluated for “stone events” and complications. Residual fragments >4 mm were more likely to grow (p<0.001), result in complications (p=0.039), and re-interventions (p=0.01). Subset analysis also suggests step-wise increase in morbidity with increasing residual fragment size >2 mm.CrossRefPubMed
76.
go back to reference Tracey J, Gagin G, Ghani K, et al. Stone dusting: outcomes of ureteroscopic lithotripsy using a multi-cavity high-power Holmium laser [abstract]. J Urol. 2016;195(4S):e510.CrossRef Tracey J, Gagin G, Ghani K, et al. Stone dusting: outcomes of ureteroscopic lithotripsy using a multi-cavity high-power Holmium laser [abstract]. J Urol. 2016;195(4S):e510.CrossRef
Metadata
Title
To Dust or Not To Dust: a Systematic Review of Ureteroscopic Laser Lithotripsy Techniques
Authors
Javier E. Santiago
Adam B. Hollander
Samit D. Soni
Richard E. Link
Wesley A. Mayer
Publication date
01-04-2017
Publisher
Springer US
Published in
Current Urology Reports / Issue 4/2017
Print ISSN: 1527-2737
Electronic ISSN: 1534-6285
DOI
https://doi.org/10.1007/s11934-017-0677-8

Other articles of this Issue 4/2017

Current Urology Reports 4/2017 Go to the issue

Minimally Invasive Surgery (T Guzzo, Section Editor)

Endoscopic Treatment of Upper Tract Urothelial Carcinoma

Endourology (P Mucksavage, Section Editor)

Medical Expulsive Therapy: Worthwhile or Wishful Thinking

Endourology (P Mucksavage, Section Editor)

Update on Renal Mass Biopsy

Pediatric Urology (D Weiss, Section Editor)

Robotic Ureteral Reimplant—the Current Role