Skip to main content
Top
Published in: Current Pain and Headache Reports 8/2016

01-08-2016 | Migraine and Beyond (R Cowan, Section Editor)

Diverse Physiological Roles of Calcitonin Gene-Related Peptide in Migraine Pathology: Modulation of Neuronal-Glial-Immune Cells to Promote Peripheral and Central Sensitization

Author: Paul L. Durham

Published in: Current Pain and Headache Reports | Issue 8/2016

Login to get access

Abstract

The neuropeptide calcitonin gene-related peptide (CGRP) is implicated in the underlying pathology of migraine by promoting the development of a sensitized state of primary and secondary nociceptive neurons. The ability of CGRP to initiate and maintain peripheral and central sensitization is mediated by modulation of neuronal, glial, and immune cells in the trigeminal nociceptive signaling pathway. There is accumulating evidence to support a key role of CGRP in promoting cross excitation within the trigeminal ganglion that may help to explain the high co-morbidity of migraine with rhinosinusitis and temporomandibular joint disorder. In addition, there is emerging evidence that CGRP facilitates and sustains a hyperresponsive neuronal state in migraineurs mediated by reported risk factors such as stress and anxiety. In this review, the significant role of CGRP as a modulator of the trigeminal system will be discussed to provide a better understanding of the underlying pathology associated with the migraine phenotype.
Literature
2.
go back to reference Lipton R et al. Prevalence and burden of migraine in the United States: data from the American Migraine Study II. Headache. 2001;41:646–57.CrossRefPubMed Lipton R et al. Prevalence and burden of migraine in the United States: data from the American Migraine Study II. Headache. 2001;41:646–57.CrossRefPubMed
3.
4.••
go back to reference Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci. 2015;35(17):6619–29. This is an excellent comprehensive review of our current understanding of migraine pathology.CrossRefPubMedPubMedCentral Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci. 2015;35(17):6619–29. This is an excellent comprehensive review of our current understanding of migraine pathology.CrossRefPubMedPubMedCentral
6.
go back to reference Kelman L. The triggers or precipitants of the acute migraine attack. Cephalalgia. 2007;27(5):394–402.CrossRefPubMed Kelman L. The triggers or precipitants of the acute migraine attack. Cephalalgia. 2007;27(5):394–402.CrossRefPubMed
7.
go back to reference Goadsby P, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol. 1993;33:48–56.CrossRefPubMed Goadsby P, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol. 1993;33:48–56.CrossRefPubMed
8.
go back to reference Goadsby PJ, Edvinsson L, Joint 1994 Wolff Award Presentation. Peripheral and central trigeminovascular activation in cat is blocked by the serotonin (5HT)-1D receptor agonist 311C90. Headache. 1994;34(7):394–9.CrossRefPubMed Goadsby PJ, Edvinsson L, Joint 1994 Wolff Award Presentation. Peripheral and central trigeminovascular activation in cat is blocked by the serotonin (5HT)-1D receptor agonist 311C90. Headache. 1994;34(7):394–9.CrossRefPubMed
9.
go back to reference Benemei S et al. Pain pharmacology in migraine: focus on CGRP and CGRP receptors. Neurol Sci. 2007;28 Suppl 2:S89–93.CrossRefPubMed Benemei S et al. Pain pharmacology in migraine: focus on CGRP and CGRP receptors. Neurol Sci. 2007;28 Suppl 2:S89–93.CrossRefPubMed
10.
go back to reference Villalon CM, Olesen J. The role of CGRP in the pathophysiology of migraine and efficacy of CGRP receptor antagonists as acute antimigraine drugs. Pharmacol Ther. 2009;124(3):309–23.CrossRefPubMed Villalon CM, Olesen J. The role of CGRP in the pathophysiology of migraine and efficacy of CGRP receptor antagonists as acute antimigraine drugs. Pharmacol Ther. 2009;124(3):309–23.CrossRefPubMed
11.
go back to reference Goadsby P, Edvinsson L. Human in vivo evidence for trigeminovascular activation in cluster headache. Neuropeptide changes and effects of acute attacks therapies. Brain. 1994;117:427–34.CrossRefPubMed Goadsby P, Edvinsson L. Human in vivo evidence for trigeminovascular activation in cluster headache. Neuropeptide changes and effects of acute attacks therapies. Brain. 1994;117:427–34.CrossRefPubMed
12.
go back to reference Fanciullacci M et al. Increase in plasma calcitonin gene-related peptide from the extracerebral circulation during nitroglycerin-induced cluster headache attack. Pain. 1995;60(2):119–23.CrossRefPubMed Fanciullacci M et al. Increase in plasma calcitonin gene-related peptide from the extracerebral circulation during nitroglycerin-induced cluster headache attack. Pain. 1995;60(2):119–23.CrossRefPubMed
13.
go back to reference Durham P, Papapetropoulos S. Biomarkers associated with migraine and their potential role in migraine management. Headache. 2013;53(8):1262–77.CrossRefPubMed Durham P, Papapetropoulos S. Biomarkers associated with migraine and their potential role in migraine management. Headache. 2013;53(8):1262–77.CrossRefPubMed
14.
go back to reference van Dongen RM et al. Migraine biomarkers in cerebrospinal fluid: a systematic review and meta-analysis. Cephalalgia. 2016. van Dongen RM et al. Migraine biomarkers in cerebrospinal fluid: a systematic review and meta-analysis. Cephalalgia. 2016.
15.
go back to reference Bigal, M.E., A.V. Krymchantowski, R. Hargreaves. The triptans. Expert Rev Neurother. 2009;9(5):649–59. Bigal, M.E., A.V. Krymchantowski, R. Hargreaves. The triptans. Expert Rev Neurother. 2009;9(5):649–59.
16.
go back to reference Villalon, C.M., et al., Migraine: pathophysiology, pharmacology, treatment and future trends. Curr Vasc Pharmacol. 2003;1(1):71–84. Villalon, C.M., et al., Migraine: pathophysiology, pharmacology, treatment and future trends. Curr Vasc Pharmacol. 2003;1(1):71–84.
17.
go back to reference Olesen J et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Eng J Med. 2004;350:1104–10. Olesen J et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Eng J Med. 2004;350:1104–10.
18.
19.
go back to reference Haut SR, Bigal ME, Lipton RB. Chronic disorders with episodic manifestations: focus on epilepsy and migraine. Lancet Neurol. 2006;5(2):148–57. Haut SR, Bigal ME, Lipton RB. Chronic disorders with episodic manifestations: focus on epilepsy and migraine. Lancet Neurol. 2006;5(2):148–57.
20.
go back to reference Ren K, Dubner R. Central nervous system plasticity and persistent pain. J Orofac Pain. 1999;13(3):155–63. discussion 164-71.PubMed Ren K, Dubner R. Central nervous system plasticity and persistent pain. J Orofac Pain. 1999;13(3):155–63. discussion 164-71.PubMed
21.
go back to reference Bellamy J et al. Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons. Eur J Neurosci. 2006;23(8):2057–66.CrossRefPubMedPubMedCentral Bellamy J et al. Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons. Eur J Neurosci. 2006;23(8):2057–66.CrossRefPubMedPubMedCentral
22.
go back to reference Cady RK et al. Sinus headache: a neurology, otolaryngology, allergy, and primary care consensus on diagnosis and treatment. Mayo Clin Proc. 2005;80(7):908–16. Cady RK et al. Sinus headache: a neurology, otolaryngology, allergy, and primary care consensus on diagnosis and treatment. Mayo Clin Proc. 2005;80(7):908–16.
23.
go back to reference Ballegaard V et al. Are headache and temporomandibular disorders related? A blinded study. Cephalalgia. 2008;28(8):832–41.CrossRefPubMed Ballegaard V et al. Are headache and temporomandibular disorders related? A blinded study. Cephalalgia. 2008;28(8):832–41.CrossRefPubMed
24.
go back to reference Bevilaqua Grossi D, Lipton RB, Bigal ME. Temporomandibular disorders and migraine chronification. Curr Pain Headache Rep. 2009;13(4):314–8.CrossRefPubMed Bevilaqua Grossi D, Lipton RB, Bigal ME. Temporomandibular disorders and migraine chronification. Curr Pain Headache Rep. 2009;13(4):314–8.CrossRefPubMed
25.
go back to reference Dahan H et al. Specific and number of comorbidities are associated with increased levels of temporomandibular pain intensity and duration. J Headache Pain. 2015;16:528.CrossRefPubMed Dahan H et al. Specific and number of comorbidities are associated with increased levels of temporomandibular pain intensity and duration. J Headache Pain. 2015;16:528.CrossRefPubMed
26.
go back to reference Graff-Radford SB. Temporomandibular disorders and headache. Dent Clin N Am. 2007;51(1):129–44. vi-vii.CrossRefPubMed Graff-Radford SB. Temporomandibular disorders and headache. Dent Clin N Am. 2007;51(1):129–44. vi-vii.CrossRefPubMed
27.
go back to reference Amara S et al. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature. 1982;298:240–4.CrossRefPubMed Amara S et al. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature. 1982;298:240–4.CrossRefPubMed
28.
go back to reference Rosenfeld M et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature. 1983;304:129–35.CrossRefPubMed Rosenfeld M et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature. 1983;304:129–35.CrossRefPubMed
29.
go back to reference Fischer JA, Born W. Novel peptides from the calcitonin gene: expression, receptors and biological function. Peptides. 1985;6 Suppl 3:265–71.CrossRefPubMed Fischer JA, Born W. Novel peptides from the calcitonin gene: expression, receptors and biological function. Peptides. 1985;6 Suppl 3:265–71.CrossRefPubMed
30.
go back to reference Mulderry PK et al. Differential expression of alpha-CGRP and beta-CGRP by primary sensory neurons and enteric autonomic neurons of the rat. Neuroscience. 1988;25(1):195–205.CrossRefPubMed Mulderry PK et al. Differential expression of alpha-CGRP and beta-CGRP by primary sensory neurons and enteric autonomic neurons of the rat. Neuroscience. 1988;25(1):195–205.CrossRefPubMed
31.
go back to reference Amara SG et al. Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science. 1985;229(4718):1094–7.CrossRefPubMed Amara SG et al. Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science. 1985;229(4718):1094–7.CrossRefPubMed
32.
go back to reference van Rossum D, Hanisch U, Quirion R. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev. 1997;21(5):649–78.CrossRefPubMed van Rossum D, Hanisch U, Quirion R. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev. 1997;21(5):649–78.CrossRefPubMed
33.
go back to reference Wimalawansa S. Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev. 1996;17(5):533–85.CrossRefPubMed Wimalawansa S. Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev. 1996;17(5):533–85.CrossRefPubMed
34.
go back to reference Poyner D et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev. 2002;54(2):233–46.CrossRefPubMed Poyner D et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev. 2002;54(2):233–46.CrossRefPubMed
35.
go back to reference Mallee J et al. Receptor activity-modifying protein 1 determines the species selectivity of non-peptide CGRP receptor antagonists. J Biol Chem. 2002;277(16):14294–8.CrossRefPubMed Mallee J et al. Receptor activity-modifying protein 1 determines the species selectivity of non-peptide CGRP receptor antagonists. J Biol Chem. 2002;277(16):14294–8.CrossRefPubMed
36.•
go back to reference Russell FA et al. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014;94(4):1099–142. This review provides a thorough summary of the diverse physiological and pathophysiological roles of CGRP following its release from sensory neurons. CrossRefPubMedPubMedCentral Russell FA et al. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014;94(4):1099–142. This review provides a thorough summary of the diverse physiological and pathophysiological roles of CGRP following its release from sensory neurons. CrossRefPubMedPubMedCentral
37.
go back to reference Messlinger K, Fischer MJ, Lennerz JK. Neuropeptide effects in the trigeminal system: pathophysiology and clinical relevance in migraine. Keio J Med. 2011;60(3):82–9.CrossRefPubMed Messlinger K, Fischer MJ, Lennerz JK. Neuropeptide effects in the trigeminal system: pathophysiology and clinical relevance in migraine. Keio J Med. 2011;60(3):82–9.CrossRefPubMed
38.
go back to reference Zhang Z et al. Sensitization of calcitonin gene-related peptide receptors by receptor activity-modifying protein-1 in the trigeminal ganglion. J Neurosci. 2007;27(10):2693–703.CrossRefPubMed Zhang Z et al. Sensitization of calcitonin gene-related peptide receptors by receptor activity-modifying protein-1 in the trigeminal ganglion. J Neurosci. 2007;27(10):2693–703.CrossRefPubMed
39.
go back to reference Li J, Vause C, Durham P. Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells. Brain Res. 2008;1196:22–32.CrossRefPubMedPubMedCentral Li J, Vause C, Durham P. Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells. Brain Res. 2008;1196:22–32.CrossRefPubMedPubMedCentral
40.
go back to reference Thalakoti, S., et al., Neuron-Glia signaling in trigeminal ganglion: Implications for migraine pathology. Headache, 2007. 47(7): p. 1008–1023. Thalakoti, S., et al., Neuron-Glia signaling in trigeminal ganglion: Implications for migraine pathology. Headache, 2007. 47(7): p. 1008–1023.
42.
go back to reference Peroutka SJ. Neurogenic inflammation and migraine: implications for the therapeutics. Mol Interv. 2005;5(5):304–11.CrossRefPubMed Peroutka SJ. Neurogenic inflammation and migraine: implications for the therapeutics. Mol Interv. 2005;5(5):304–11.CrossRefPubMed
43.
go back to reference Levy D, Jakubowski M, Burstein R. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists. Proc Natl Acad Sci U S A. 2004;101(12):4274–9.CrossRefPubMedPubMedCentral Levy D, Jakubowski M, Burstein R. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists. Proc Natl Acad Sci U S A. 2004;101(12):4274–9.CrossRefPubMedPubMedCentral
44.
45.
go back to reference Xie YF. Glial involvement in trigeminal central sensitization. Acta Pharmacol Sin. 2008;29(6):641–5.CrossRefPubMed Xie YF. Glial involvement in trigeminal central sensitization. Acta Pharmacol Sin. 2008;29(6):641–5.CrossRefPubMed
46.
go back to reference Old EA, Clark AK, Malcangio M. The role of glia in the spinal cord in neuropathic and inflammatory pain. Handb Exp Pharmacol. 2015;227:145–70.CrossRefPubMed Old EA, Clark AK, Malcangio M. The role of glia in the spinal cord in neuropathic and inflammatory pain. Handb Exp Pharmacol. 2015;227:145–70.CrossRefPubMed
47.
go back to reference Durham PL, Russo AF. Regulation of calcitonin gene-related peptide secretion by a serotonergic antimigraine drug. J Neurosci. 1999;19(9):3423–9.PubMed Durham PL, Russo AF. Regulation of calcitonin gene-related peptide secretion by a serotonergic antimigraine drug. J Neurosci. 1999;19(9):3423–9.PubMed
48.
go back to reference Durham PL, Garrett FG. Emerging importance of neuron-satellite glia interactions within trigeminal ganglia in craniofacial pain. Open Pain J. 2010;3:3–13. Durham PL, Garrett FG. Emerging importance of neuron-satellite glia interactions within trigeminal ganglia in craniofacial pain. Open Pain J. 2010;3:3–13.
49.
go back to reference Freeman S, Patil V, Durham P. Nitric oxide-proton stimulation of trigeminal ganglion neurons increases mitogen-activated protein kinase and phosphatase expression in neurons and satellite glial cells. Neuroscience. 2008;157:542–55.CrossRefPubMedPubMedCentral Freeman S, Patil V, Durham P. Nitric oxide-proton stimulation of trigeminal ganglion neurons increases mitogen-activated protein kinase and phosphatase expression in neurons and satellite glial cells. Neuroscience. 2008;157:542–55.CrossRefPubMedPubMedCentral
50.
go back to reference Vause CV, Durham PL. CGRP stimulation of iNOS and NO release from trigeminal ganglion glial cells involves mitogen-activated protein kinase pathways. J Neurochem. 2009;110(3):811–21.CrossRefPubMedPubMedCentral Vause CV, Durham PL. CGRP stimulation of iNOS and NO release from trigeminal ganglion glial cells involves mitogen-activated protein kinase pathways. J Neurochem. 2009;110(3):811–21.CrossRefPubMedPubMedCentral
53.
go back to reference Meng J et al. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci. 2009;29(15):4981–92.CrossRefPubMed Meng J et al. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci. 2009;29(15):4981–92.CrossRefPubMed
54.
go back to reference Meng J et al. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci. 2007;120(Pt 16):2864–74.CrossRefPubMed Meng J et al. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci. 2007;120(Pt 16):2864–74.CrossRefPubMed
55.
go back to reference Durham PL, Cady R. Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy. Headache. 2004;44(1):35–42. Discussion 42-3.CrossRefPubMed Durham PL, Cady R. Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy. Headache. 2004;44(1):35–42. Discussion 42-3.CrossRefPubMed
56.
go back to reference Dolly JO, Aoki KR. The structure and mode of action of different botulinum toxins. Eur J Neurol. 2006;13 Suppl 4:1–9.CrossRefPubMed Dolly JO, Aoki KR. The structure and mode of action of different botulinum toxins. Eur J Neurol. 2006;13 Suppl 4:1–9.CrossRefPubMed
57.
go back to reference Bigal M et al. Satisfaction with current migraine therapy: experience from 3 centers in US and Sweden. Headache. 2007;47(4):475–9.CrossRefPubMed Bigal M et al. Satisfaction with current migraine therapy: experience from 3 centers in US and Sweden. Headache. 2007;47(4):475–9.CrossRefPubMed
58.
go back to reference Diener HC et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 2 trial. Cephalalgia. 2010;30(7):804–14.CrossRefPubMed Diener HC et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 2 trial. Cephalalgia. 2010;30(7):804–14.CrossRefPubMed
59.
go back to reference Durham PL, Masterson CG. Two mechanisms involved in trigeminal CGRP release: implications for migraine treatment. Headache. 2013;53(1):67–80.CrossRefPubMed Durham PL, Masterson CG. Two mechanisms involved in trigeminal CGRP release: implications for migraine treatment. Headache. 2013;53(1):67–80.CrossRefPubMed
60.
go back to reference Vause C et al. Effect of carbon dioxide on calcitonin gene-related peptide secretion from trigeminal neurons. Headache. 2007;47(10):1385–97.PubMedPubMedCentral Vause C et al. Effect of carbon dioxide on calcitonin gene-related peptide secretion from trigeminal neurons. Headache. 2007;47(10):1385–97.PubMedPubMedCentral
61.
go back to reference Yan J et al. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache. Pain. 2011;152(1):106–13.CrossRefPubMed Yan J et al. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache. Pain. 2011;152(1):106–13.CrossRefPubMed
62.
go back to reference Bolay H, Moskowitz MA. Mechanisms of pain modulation in chronic syndromes. Neurology. 2002;59(5 Suppl 2):S2–7.CrossRefPubMed Bolay H, Moskowitz MA. Mechanisms of pain modulation in chronic syndromes. Neurology. 2002;59(5 Suppl 2):S2–7.CrossRefPubMed
63.
go back to reference Hargreaves RJ, Shepheard SL. Pathophysiology of migraine—new insights. Can J Neurol Sci. 1999;26 Suppl 3:S12–9.CrossRefPubMed Hargreaves RJ, Shepheard SL. Pathophysiology of migraine—new insights. Can J Neurol Sci. 1999;26 Suppl 3:S12–9.CrossRefPubMed
64.
go back to reference Mamet J et al. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci. 2002;22(24):10662–70.PubMed Mamet J et al. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci. 2002;22(24):10662–70.PubMed
65.
go back to reference Lingueglia E. Acid-sensing ion channels in sensory perception. J Biol Chem. 2007;282(24):17325–9.CrossRefPubMed Lingueglia E. Acid-sensing ion channels in sensory perception. J Biol Chem. 2007;282(24):17325–9.CrossRefPubMed
66.
go back to reference Voilley N et al. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci. 2001;21(20):8026–33.PubMed Voilley N et al. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci. 2001;21(20):8026–33.PubMed
67.
go back to reference Brandes JL et al. Sumatriptan-naproxen for acute treatment of migraine: a randomized trial. JAMA. 2007;297(13):1443–54.CrossRefPubMed Brandes JL et al. Sumatriptan-naproxen for acute treatment of migraine: a randomized trial. JAMA. 2007;297(13):1443–54.CrossRefPubMed
68.
go back to reference Holland PR et al. Acid-sensing ion channel 1: a novel therapeutic target for migraine with aura. Ann Neurol. 2012;72(4):559–63.CrossRefPubMed Holland PR et al. Acid-sensing ion channel 1: a novel therapeutic target for migraine with aura. Ann Neurol. 2012;72(4):559–63.CrossRefPubMed
69.
go back to reference Cady RK, Schreiber CP. Sinus problems as a cause of headache refractoriness and migraine chronification. Curr Pain Headache Rep. 2009;13(4):319–25.CrossRefPubMed Cady RK, Schreiber CP. Sinus problems as a cause of headache refractoriness and migraine chronification. Curr Pain Headache Rep. 2009;13(4):319–25.CrossRefPubMed
70.
go back to reference Oh EJ, Weinreich D. Chemical communication between vagal afferent somata in nodose ganglia of the rat and the guinea pig in vitro. J Neurophysiol. 2002;87:2801–7.PubMed Oh EJ, Weinreich D. Chemical communication between vagal afferent somata in nodose ganglia of the rat and the guinea pig in vitro. J Neurophysiol. 2002;87:2801–7.PubMed
71.
go back to reference Amir R, Devor M. Chemically mediated cross-excitation in rat dorsal root ganglia. J Neurosci. 1996;16(15):4733–41.PubMed Amir R, Devor M. Chemically mediated cross-excitation in rat dorsal root ganglia. J Neurosci. 1996;16(15):4733–41.PubMed
72.
go back to reference Amir R, Devor M. Functional cross-excitation between afferent A- and C-neurons in dorsal root ganglia. Neuroscience. 2000;95(1):189–95.CrossRefPubMed Amir R, Devor M. Functional cross-excitation between afferent A- and C-neurons in dorsal root ganglia. Neuroscience. 2000;95(1):189–95.CrossRefPubMed
73.
go back to reference Ulrich-Lai, Y.M., et al., Capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from rat trigeminal ganglion: evidence for intraganglionic neurotransmission. Pain, 2001. 91(3): p. 219-26. Ulrich-Lai, Y.M., et al., Capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from rat trigeminal ganglion: evidence for intraganglionic neurotransmission. Pain, 2001. 91(3): p. 219-26.
75.
go back to reference Neubert JK et al. Inflammation-induced changes in primary afferent-evoked release of substance P within trigeminal ganglia in vivo. Brain Res. 2000;871(2):181–91.CrossRefPubMed Neubert JK et al. Inflammation-induced changes in primary afferent-evoked release of substance P within trigeminal ganglia in vivo. Brain Res. 2000;871(2):181–91.CrossRefPubMed
76.
go back to reference Arinci A et al. Molecular correlates of temporomandibular joint disease. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:666–70.CrossRefPubMed Arinci A et al. Molecular correlates of temporomandibular joint disease. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:666–70.CrossRefPubMed
77.
go back to reference Takahashi T et al. Association between arthroscopic diagnosis of temporomandibular joint osteoarthritis and synovial fluid nitric oxide levels. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88:129–36.CrossRefPubMed Takahashi T et al. Association between arthroscopic diagnosis of temporomandibular joint osteoarthritis and synovial fluid nitric oxide levels. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88:129–36.CrossRefPubMed
79.
go back to reference Buse DC et al. Psychiatric comorbidities of episodic and chronic migraine. J Neurol. 2013;260(8):1960–9.CrossRefPubMed Buse DC et al. Psychiatric comorbidities of episodic and chronic migraine. J Neurol. 2013;260(8):1960–9.CrossRefPubMed
80.
go back to reference Barry CM et al. Sensory nerve fibers containing calcitonin gene-related peptide in gastrocnemius, latissimus dorsi and erector spinae muscles and thoracolumbar fascia in mice. Neuroscience. 2015;291:106–17.CrossRefPubMed Barry CM et al. Sensory nerve fibers containing calcitonin gene-related peptide in gastrocnemius, latissimus dorsi and erector spinae muscles and thoracolumbar fascia in mice. Neuroscience. 2015;291:106–17.CrossRefPubMed
81.
go back to reference Dudek A et al. Immunohistochemical properties of motoneurons supplying the trapezius muscle in the rat. Pol J Vet Sci. 2011;14(2):199–205.PubMed Dudek A et al. Immunohistochemical properties of motoneurons supplying the trapezius muscle in the rat. Pol J Vet Sci. 2011;14(2):199–205.PubMed
82.
go back to reference Tsukagoshi M, Goris RC, Funakoshi K. Differential distribution of vanilloid receptors in the primary sensory neurons projecting to the dorsal skin and muscles. Histochem Cell Biol. 2006;126(3):343–52.CrossRefPubMed Tsukagoshi M, Goris RC, Funakoshi K. Differential distribution of vanilloid receptors in the primary sensory neurons projecting to the dorsal skin and muscles. Histochem Cell Biol. 2006;126(3):343–52.CrossRefPubMed
83.
go back to reference Graven-Nielsen T, Arendt-Nielsen L. Peripheral and central sensitization in musculoskeletal pain disorders: an experimental approach. Curr Rheumatol Rep. 2002;4(4):313–21.CrossRefPubMed Graven-Nielsen T, Arendt-Nielsen L. Peripheral and central sensitization in musculoskeletal pain disorders: an experimental approach. Curr Rheumatol Rep. 2002;4(4):313–21.CrossRefPubMed
84.
go back to reference Neugebauer V, Rumenapp P, Schaible HG. Calcitonin gene-related peptide is involved in the spinal processing of mechanosensory input from the rat’s knee joint and in the generation and maintenance of hyperexcitability of dorsal horn-neurons during development of acute inflammation. Neuroscience. 1996;71(4):1095–109.CrossRefPubMed Neugebauer V, Rumenapp P, Schaible HG. Calcitonin gene-related peptide is involved in the spinal processing of mechanosensory input from the rat’s knee joint and in the generation and maintenance of hyperexcitability of dorsal horn-neurons during development of acute inflammation. Neuroscience. 1996;71(4):1095–109.CrossRefPubMed
85.
go back to reference Sun R et al. Calcitonin gene-related peptide receptor activation produces PKA- and PKC-dependent mechanical hyperalgesia and central sensitization. J Neurophysiol. 2004;92:2859–66.CrossRefPubMed Sun R et al. Calcitonin gene-related peptide receptor activation produces PKA- and PKC-dependent mechanical hyperalgesia and central sensitization. J Neurophysiol. 2004;92:2859–66.CrossRefPubMed
86.
go back to reference Yu LC, Hansson P, Lundeberg T. The calcitonin gene-related peptide antagonist CGRP8-37 increases the latency to withdrawal responses in rats. Brain Res. 1994;653(1-2):223–30.CrossRefPubMed Yu LC, Hansson P, Lundeberg T. The calcitonin gene-related peptide antagonist CGRP8-37 increases the latency to withdrawal responses in rats. Brain Res. 1994;653(1-2):223–30.CrossRefPubMed
87.
go back to reference Kawamura M et al. Antinociceptive effect of intrathecally administered antiserum against calcitonin gene-related peptide on thermal and mechanical noxious stimuli in experimental hyperalgesic rats. Brain Res. 1989;497(1):199–203.CrossRefPubMed Kawamura M et al. Antinociceptive effect of intrathecally administered antiserum against calcitonin gene-related peptide on thermal and mechanical noxious stimuli in experimental hyperalgesic rats. Brain Res. 1989;497(1):199–203.CrossRefPubMed
88.
go back to reference Evidente VG, Adler CH. An update on the neurologic applications of botulinum toxins. Curr Neurol Neurosci Rep. 2010;10(5):338–44.CrossRefPubMed Evidente VG, Adler CH. An update on the neurologic applications of botulinum toxins. Curr Neurol Neurosci Rep. 2010;10(5):338–44.CrossRefPubMed
89.
go back to reference Dolly O. Synaptic transmission: inhibition of neurotransmitter release by botulinum toxins. Headache. 2003;43 Suppl 1:S16–24.CrossRefPubMed Dolly O. Synaptic transmission: inhibition of neurotransmitter release by botulinum toxins. Headache. 2003;43 Suppl 1:S16–24.CrossRefPubMed
90.
go back to reference Morch CD et al. Convergence of cutaneous, musculoskeletal, dural and visceral afferents onto nociceptive neurons in the first cervical dorsal horn. Eur J Neurosci. 2007;26(1):142–54.CrossRefPubMed Morch CD et al. Convergence of cutaneous, musculoskeletal, dural and visceral afferents onto nociceptive neurons in the first cervical dorsal horn. Eur J Neurosci. 2007;26(1):142–54.CrossRefPubMed
91.
go back to reference Fernandez-de-las-Penas C et al. The role of myofascial trigger points in musculoskeletal pain syndromes of the head and neck. Curr Pain Headache Rep. 2007;11(5):365–72.CrossRefPubMed Fernandez-de-las-Penas C et al. The role of myofascial trigger points in musculoskeletal pain syndromes of the head and neck. Curr Pain Headache Rep. 2007;11(5):365–72.CrossRefPubMed
92.
go back to reference Lam DK, Sessle BJ, Hu JW. Glutamate and capsaicin effects on trigeminal nociception II: activation and central sensitization in brainstem neurons with deep craniofacial afferent input. Brain Res. 2009;1253:48–59.CrossRefPubMed Lam DK, Sessle BJ, Hu JW. Glutamate and capsaicin effects on trigeminal nociception II: activation and central sensitization in brainstem neurons with deep craniofacial afferent input. Brain Res. 2009;1253:48–59.CrossRefPubMed
93.
go back to reference Bach-Rojecky L, Lackovic Z. Central origin of the antinociceptive action of botulinum toxin type A. Pharmacol Biochem Behav. 2009;94(2):234–8.CrossRefPubMed Bach-Rojecky L, Lackovic Z. Central origin of the antinociceptive action of botulinum toxin type A. Pharmacol Biochem Behav. 2009;94(2):234–8.CrossRefPubMed
94.
go back to reference Gobel H et al. Efficacy and safety of a single botulinum type A toxin complex treatment (Dysport) for the relief of upper back myofascial pain syndrome: results from a randomized double-blind placebo-controlled multicentre study. Pain. 2006;125(1-2):82–8.CrossRefPubMed Gobel H et al. Efficacy and safety of a single botulinum type A toxin complex treatment (Dysport) for the relief of upper back myofascial pain syndrome: results from a randomized double-blind placebo-controlled multicentre study. Pain. 2006;125(1-2):82–8.CrossRefPubMed
95.•
go back to reference Gungor NZ, Pare D. CGRP inhibits neurons of the bed nucleus of the stria terminalis: implications for the regulation of fear and anxiety. J Neurosci. 2014;34(1):60–5. This study provides evidence of the emerging role of CGRP in anxiety-related behaviors that is likely to have important implications for progression of migraine pathology. CrossRefPubMedPubMedCentral Gungor NZ, Pare D. CGRP inhibits neurons of the bed nucleus of the stria terminalis: implications for the regulation of fear and anxiety. J Neurosci. 2014;34(1):60–5. This study provides evidence of the emerging role of CGRP in anxiety-related behaviors that is likely to have important implications for progression of migraine pathology. CrossRefPubMedPubMedCentral
96.
go back to reference Choi DC et al. Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J Neurosci. 2007;27(8):2025–34.CrossRefPubMed Choi DC et al. Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J Neurosci. 2007;27(8):2025–34.CrossRefPubMed
97.
go back to reference Rouwette T et al. The amygdala, a relay station for switching on and off pain. Eur J Pain. 2012;16(6):782–92.CrossRefPubMed Rouwette T et al. The amygdala, a relay station for switching on and off pain. Eur J Pain. 2012;16(6):782–92.CrossRefPubMed
Metadata
Title
Diverse Physiological Roles of Calcitonin Gene-Related Peptide in Migraine Pathology: Modulation of Neuronal-Glial-Immune Cells to Promote Peripheral and Central Sensitization
Author
Paul L. Durham
Publication date
01-08-2016
Publisher
Springer US
Published in
Current Pain and Headache Reports / Issue 8/2016
Print ISSN: 1531-3433
Electronic ISSN: 1534-3081
DOI
https://doi.org/10.1007/s11916-016-0578-4