Skip to main content
Top
Published in: Current Osteoporosis Reports 4/2020

Open Access 01-08-2020 | Osteogenesis Imperfecta | Rare Bone Diseases (CB Langman and E Shore, Section Editors)

Stem Cell Therapy as a Treatment for Osteogenesis Imperfecta

Authors: Cecilia Götherström, Lilian Walther-Jallow

Published in: Current Osteoporosis Reports | Issue 4/2020

Login to get access

Abstract

Purpose of Review

Osteogenesis imperfecta (OI) is a chronic disease with few treatment options available. The purpose of this review is to provide an overview on treating OI with mesenchymal stem cells (MSC).

Recent Findings

Off-the-shelf MSC have a good safety profile and exhibit multilineage differentiation potential and a low immunogenic profile and are easy to manufacture. Their ability to migrate, engraft, and differentiate into bone cells, and also to act via paracrine effects on the recipient’s tissues, makes MSC candidates as a clinical therapy for OI. Due to their high osteogenic potency, fetal MSC offer an even higher therapeutic potential in OI compared with MSC derived from adult sources. Preclinical and initial clinical data support the use of MSC in treating OI.

Summary

The characteristics of MSC make them of great interest in treating OI. MSC may be safely transplanted via intravenous administration and show potential positive clinical effects.
Literature
4.
go back to reference Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979;16(2):101–16.CrossRef Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979;16(2):101–16.CrossRef
5.
6.
go back to reference Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363(9418):1377–85.CrossRef Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363(9418):1377–85.CrossRef
10.
go back to reference Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.CrossRef Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.CrossRef
11.
go back to reference Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000;6(11):1282–6.CrossRef Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000;6(11):1282–6.CrossRef
12.
go back to reference Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood. 2003;101(8):2999–3001.CrossRef Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood. 2003;101(8):2999–3001.CrossRef
21.
go back to reference Chan J, O'Donoghue K, Kennea N, de la Fuente J, Kumar S, Morgan J, et al. Myogenic potential of fetal mesenchymal stem cells. Ann Acad Med Singapore. 2003;32(5 Suppl):S11–3.PubMed Chan J, O'Donoghue K, Kennea N, de la Fuente J, Kumar S, Morgan J, et al. Myogenic potential of fetal mesenchymal stem cells. Ann Acad Med Singapore. 2003;32(5 Suppl):S11–3.PubMed
22.
23.
go back to reference Kennea NL, Waddington SN, Chan J, O'Donoghue K, Yeung D, Taylor DL, et al. Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype. Cell Cycle. 2009;8(7):1069–79.CrossRef Kennea NL, Waddington SN, Chan J, O'Donoghue K, Yeung D, Taylor DL, et al. Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype. Cell Cycle. 2009;8(7):1069–79.CrossRef
26.
go back to reference Le Blanc K, Tammik L, Zetterberg E, Ringdén O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–6.CrossRef Le Blanc K, Tammik L, Zetterberg E, Ringdén O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–6.CrossRef
27.
go back to reference Götherström C, Ringden O, Tammik C, Zetterberg E, Westgren M, Le Blanc K. Immunologic properties of human fetal mesenchymal stem cells. Am J Obstet Gynecol. 2004;190(1):239–45.CrossRef Götherström C, Ringden O, Tammik C, Zetterberg E, Westgren M, Le Blanc K. Immunologic properties of human fetal mesenchymal stem cells. Am J Obstet Gynecol. 2004;190(1):239–45.CrossRef
29.
go back to reference Götherström C, Ringden O, Westgren M, Tammik C, Le Blanc K. Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant. 2003;32(3):265–72.CrossRef Götherström C, Ringden O, Westgren M, Tammik C, Le Blanc K. Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant. 2003;32(3):265–72.CrossRef
30.
go back to reference Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57(1):11–20.CrossRef Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57(1):11–20.CrossRef
31.
go back to reference Pereira RF, O'Hara MD, Laptev AV, Halford KW, Pollard MD, Class R, et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci U S A. 1998;95(3):1142–7.CrossRef Pereira RF, O'Hara MD, Laptev AV, Halford KW, Pollard MD, Class R, et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci U S A. 1998;95(3):1142–7.CrossRef
38.
go back to reference •• Nitkin CR, Bonfield TL. Concise review: mesenchymal stem cell therapy for pediatric disease: perspectives on success and potential improvements. Stem Cells Transl Med. 2017;6(2):539–65. https://doi.org/10.5966/sctm.2015-0427. The paper summarizes the recent progress in the MSC therapy field in the pediatric population.CrossRefPubMed •• Nitkin CR, Bonfield TL. Concise review: mesenchymal stem cell therapy for pediatric disease: perspectives on success and potential improvements. Stem Cells Transl Med. 2017;6(2):539–65. https://​doi.​org/​10.​5966/​sctm.​2015-0427. The paper summarizes the recent progress in the MSC therapy field in the pediatric population.CrossRefPubMed
39.
go back to reference Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood. 2001;97(5):1227–31.CrossRef Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood. 2001;97(5):1227–31.CrossRef
40.
go back to reference Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A. 2002;99(13):8932–7.CrossRef Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A. 2002;99(13):8932–7.CrossRef
41.
go back to reference Le Blanc K, Götherström C, Ringden O, Hassan M, McMahon R, Horwitz E, et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation. 2005;79(11):1607–14.CrossRef Le Blanc K, Götherström C, Ringden O, Hassan M, McMahon R, Horwitz E, et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation. 2005;79(11):1607–14.CrossRef
42.
go back to reference •• Götherström C, Westgren M, Shaw SW, Åström E, Biswas A, Byers PH, et al. Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience. Stem Cells Transl Med. 2014;3(2):255–64. https://doi.org/10.5966/sctm.2013-0090. The paper describes the two first prenatal fetal MSC transplantations as treatment of OI, which resulted in donor cell engraftment in bone and potential clinical effects.CrossRefPubMed •• Götherström C, Westgren M, Shaw SW, Åström E, Biswas A, Byers PH, et al. Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience. Stem Cells Transl Med. 2014;3(2):255–64. https://​doi.​org/​10.​5966/​sctm.​2013-0090. The paper describes the two first prenatal fetal MSC transplantations as treatment of OI, which resulted in donor cell engraftment in bone and potential clinical effects.CrossRefPubMed
Metadata
Title
Stem Cell Therapy as a Treatment for Osteogenesis Imperfecta
Authors
Cecilia Götherström
Lilian Walther-Jallow
Publication date
01-08-2020
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 4/2020
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-020-00594-3

Other articles of this Issue 4/2020

Current Osteoporosis Reports 4/2020 Go to the issue

Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)

The Impact of Exercise on Bone Health in Type 2 Diabetes Mellitus—a Systematic Review

Muscle and Bone (A Bonetto and M Brotto, Section Editors)

Myokines and Osteokines in the Pathogenesis of Muscle and Bone Diseases