Skip to main content
Top
Published in: Current Osteoporosis Reports 2/2019

Open Access 01-04-2019 | Sarcopenia | Muscle and Bone (L Bonewald and M Hamrick, Section Editors)

Genetics of Bone and Muscle Interactions in Humans

Authors: Katerina Trajanoska, Fernando Rivadeneira, Douglas P. Kiel, David Karasik

Published in: Current Osteoporosis Reports | Issue 2/2019

Login to get access

Abstract

Purpose of Review

To summarize the evidence from recent studies on the shared genetics between bone and muscle in humans.

Recent Findings

Genome-wide association studies (GWAS) have successfully identified a multitude of loci influencing the variability of different bone or muscle parameters, with multiple loci overlapping between the traits. In addition, joint analyses of multiple correlated musculoskeletal traits (i.e., multivariate GWAS) have underscored several genes with possible pleiotropic effects on both bone and muscle including MEF2C and SREBF1. Notably, several of the proposed pleiotropic genes have been validated using human cells or animal models.

Summary

It is clear that the study of pleiotropy may provide novel insights into disease pathophysiology potentially leading to the identification of new treatment strategies that simultaneously prevent or treat both osteoporosis and sarcopenia. However, the role of muscle factors (myokines) that stimulate bone metabolism, as well as osteokines that affect muscles, is in its earliest stage of understanding.
Literature
[1]
go back to reference •• Tanaka K-I, Xue Y, Nguyen-Yamamoto L, Morris JA, Kanazawa I, Sugimoto T, et al. FAM210A is a novel determinant of bone and muscle structure and strength. Proc Natl Acad Sci U S A. 2018;115:E3759–68. https://doi.org/10.1073/pnas.1719089115 This study have succesfully validated FAM210A as novel gene associated with reduced bone mass and grip strength in genetically modifed mice. FAM210A had been previously discovered to be associated with BMD using GWAS approach. •• Tanaka K-I, Xue Y, Nguyen-Yamamoto L, Morris JA, Kanazawa I, Sugimoto T, et al. FAM210A is a novel determinant of bone and muscle structure and strength. Proc Natl Acad Sci U S A. 2018;115:E3759–68. https://​doi.​org/​10.​1073/​pnas.​1719089115 This study have succesfully validated FAM210A as novel gene associated with reduced bone mass and grip strength in genetically modifed mice. FAM210A had been previously discovered to be associated with BMD using GWAS approach.
[23]
go back to reference Willems SM, Wright DJ, Day FR, Trajanoska K, Joshi PK, Morris JA, et al. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat Commun. 2017;8:16015.CrossRefPubMedPubMedCentral Willems SM, Wright DJ, Day FR, Trajanoska K, Joshi PK, Morris JA, et al. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat Commun. 2017;8:16015.CrossRefPubMedPubMedCentral
[34]
go back to reference •• Huang J, Hsu Y-H, Mo C, Abreu E, Kiel DP, Bonewald LF, et al. METTL21C Is a Potential Pleiotropic Gene for Osteoporosis and Sarcopenia Acting Through the Modulation of the NF-κB Signaling Pathway. J Bone Miner Res. 2014;29:1531–40. https://doi.org/10.1002/jbmr.2200 This study showed that METTL21C plays important role in mygenesis and osteocyte homeostasis via the NFκB signaling pathway using C2C12 myoblasts/myotubes and MLO-Y4 osteocyte-like cells. CrossRefPubMedPubMedCentral •• Huang J, Hsu Y-H, Mo C, Abreu E, Kiel DP, Bonewald LF, et al. METTL21C Is a Potential Pleiotropic Gene for Osteoporosis and Sarcopenia Acting Through the Modulation of the NF-κB Signaling Pathway. J Bone Miner Res. 2014;29:1531–40. https://​doi.​org/​10.​1002/​jbmr.​2200 This study showed that METTL21C plays important role in mygenesis and osteocyte homeostasis via the NFκB signaling pathway using C2C12 myoblasts/myotubes and MLO-Y4 osteocyte-like cells. CrossRefPubMedPubMedCentral
[40]
go back to reference •• Medina-Gomez C, Kemp JP, Dimou NL, Kreiner E, Chesi A, Zemel BS, et al. Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus. Nat Commun. 2017;8:121. https://doi.org/10.1038/s41467-017-00108-3 Using a bivaraite GWAS approach, this study have found a novel gene with pleiotropic effects on bone and muscle, which was expressed in murine and human osteoblasts, as well as in human muscle tissue. •• Medina-Gomez C, Kemp JP, Dimou NL, Kreiner E, Chesi A, Zemel BS, et al. Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus. Nat Commun. 2017;8:121. https://​doi.​org/​10.​1038/​s41467-017-00108-3 Using a bivaraite GWAS approach, this study have found a novel gene with pleiotropic effects on bone and muscle, which was expressed in murine and human osteoblasts, as well as in human muscle tissue.
[55]
go back to reference Elkasrawy MN, Hamrick MW. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact. 2010;10:56–63.PubMedPubMedCentral Elkasrawy MN, Hamrick MW. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact. 2010;10:56–63.PubMedPubMedCentral
[59]
go back to reference •• Qin Y, Peng Y, Zhao W, Pan J, Ksiezak-Reding H, Cardozo C, et al. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. J Biol Chem. 2017;292:11021–33. https://doi.org/10.1074/jbc.M116.770941 This study reported that myostatin promotes expression of several bone regulators such as SOST, DKK1, and RANKL in cultured osteocytic cells, which in turn exerts an inhibitory effect on osteoblast differentiation. •• Qin Y, Peng Y, Zhao W, Pan J, Ksiezak-Reding H, Cardozo C, et al. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. J Biol Chem. 2017;292:11021–33. https://​doi.​org/​10.​1074/​jbc.​M116.​770941 This study reported that myostatin promotes expression of several bone regulators such as SOST, DKK1, and RANKL in cultured osteocytic cells, which in turn exerts an inhibitory effect on osteoblast differentiation.
[65]
go back to reference Rochard P, Rodier A, Casas F, Cassar-Malek I, Marchal-Victorion S, Daury L, et al. Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. J Biol Chem. 2000;275:2733–44.CrossRefPubMed Rochard P, Rodier A, Casas F, Cassar-Malek I, Marchal-Victorion S, Daury L, et al. Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. J Biol Chem. 2000;275:2733–44.CrossRefPubMed
Metadata
Title
Genetics of Bone and Muscle Interactions in Humans
Authors
Katerina Trajanoska
Fernando Rivadeneira
Douglas P. Kiel
David Karasik
Publication date
01-04-2019
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 2/2019
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-019-00505-1