Skip to main content
Top
Published in: Current Osteoporosis Reports 1/2015

01-02-2015 | Skeletal Development (E Schanipani and E Zelzer, Section Editors)

Synovial Joints: from Development to Homeostasis

Authors: Lara Longobardi, Tieshi Li, Lidia Tagliafierro, Joseph D. Temple, Helen H. Willcockson, Ping Ye, Alessandra Esposito, Fuhua Xu, Anna Spagnoli

Published in: Current Osteoporosis Reports | Issue 1/2015

Login to get access

Abstract

Synovial joint morphogenesis occurs through the condensation of mesenchymal cells into a non-cartilaginous region known as the interzone and the specification of progenitor cells that commit to the articular fate. Although several signaling molecules are expressed by the interzone, the mechanism is poorly understood. For treatments of cartilage injuries, it is critical to discover the presence of joint progenitor cells in adult tissues and their expression gene pattern. Potential stem cell niches have been found in different joint regions, such as the surface zone of articular cartilage, synovium, and groove of Ranvier. Inherited joint malformations as well as joint-degenerating conditions are often associated with other skeletal defects and may be seen as the failure of morphogenic factors to establish the correct microenvironment in cartilage and bone. Therefore, exploring how joints form can help us understand how cartilage and bone are damaged and develop drugs to reactivate this developing mechanism.
Literature
1.
go back to reference Pacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today. 2005;75(3):237–48 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S. Review].PubMedCrossRef Pacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today. 2005;75(3):237–48 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S. Review].PubMedCrossRef
2.
go back to reference Ikegawa S. Genetic analysis of skeletal dysplasia: recent advances and perspectives in the post-genome-sequence era. J Hum Genet. 2006;51(7):581–6.PubMedCrossRef Ikegawa S. Genetic analysis of skeletal dysplasia: recent advances and perspectives in the post-genome-sequence era. J Hum Genet. 2006;51(7):581–6.PubMedCrossRef
3.
go back to reference Pauli RM. The natural histories of bone dysplasias in adults—vignettes, fables and just-so stories. Am J Med Genet C: Semin Med Genet. 2007;145C(3):309–21.CrossRef Pauli RM. The natural histories of bone dysplasias in adults—vignettes, fables and just-so stories. Am J Med Genet C: Semin Med Genet. 2007;145C(3):309–21.CrossRef
5.
go back to reference Hunter DJ. In the clinic. Osteoarthritis. Ann Intern Med. 2007;147(3):ITC8. -1-ITC8-16.PubMed Hunter DJ. In the clinic. Osteoarthritis. Ann Intern Med. 2007;147(3):ITC8. -1-ITC8-16.PubMed
6.
go back to reference Khan IM, Redman SN, Williams R, Dowthwaite GP, Oldfield SF, Archer CW. The development of synovial joints. Curr Top Dev Biol. 2007;79:1–36 [Review].PubMedCrossRef Khan IM, Redman SN, Williams R, Dowthwaite GP, Oldfield SF, Archer CW. The development of synovial joints. Curr Top Dev Biol. 2007;79:1–36 [Review].PubMedCrossRef
7.
go back to reference Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. Eur Cell Mater. 2005;9:23–32. discussion 23–32.PubMed Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. Eur Cell Mater. 2005;9:23–32. discussion 23–32.PubMed
8.
go back to reference Hyde G, Dover S, Aszodi A, Wallis GA, Boot-Handford RP. Lineage tracing using matrilin-1 gene expression reveals that articular chondrocytes exist as the joint interzone forms. Dev Biol. 2007;304(2):825–33.PubMedCentralPubMedCrossRef Hyde G, Dover S, Aszodi A, Wallis GA, Boot-Handford RP. Lineage tracing using matrilin-1 gene expression reveals that articular chondrocytes exist as the joint interzone forms. Dev Biol. 2007;304(2):825–33.PubMedCentralPubMedCrossRef
9.
go back to reference Iwamoto M, Tamamura Y, Koyama E, Komori T, Takeshita N, Williams JA, et al. Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis. Dev Biol. 2007;305(1):40–51.PubMedCentralPubMedCrossRef Iwamoto M, Tamamura Y, Koyama E, Komori T, Takeshita N, Williams JA, et al. Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis. Dev Biol. 2007;305(1):40–51.PubMedCentralPubMedCrossRef
10.
go back to reference Hartmann C, Tabin CJ. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell. 2001;104(3):341–51.PubMedCrossRef Hartmann C, Tabin CJ. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell. 2001;104(3):341–51.PubMedCrossRef
11.
go back to reference Pacifici M, Koyama E, Shibukawa Y, Wu C, Tamamura Y, Enomoto-Iwamoto M, et al. Cellular and molecular mechanisms of synovial joint and articular cartilage formation. Ann N Y Acad Sci. 2006;1068:74–86 [Research Support, N.I.H., Extramural Review].PubMedCentralPubMedCrossRef Pacifici M, Koyama E, Shibukawa Y, Wu C, Tamamura Y, Enomoto-Iwamoto M, et al. Cellular and molecular mechanisms of synovial joint and articular cartilage formation. Ann N Y Acad Sci. 2006;1068:74–86 [Research Support, N.I.H., Extramural Review].PubMedCentralPubMedCrossRef
12.
go back to reference Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ. Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature. 1994;368(6472):639–43.PubMedCrossRef Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ. Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature. 1994;368(6472):639–43.PubMedCrossRef
13.
go back to reference Holder N. An experimental investigation into the early development of the chick elbow joint. J Embryol Exp Morpholog. 1977;39:115–27. Holder N. An experimental investigation into the early development of the chick elbow joint. J Embryol Exp Morpholog. 1977;39:115–27.
14.
go back to reference Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T, et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol. 2008;316(1):62–73.PubMedCentralPubMedCrossRef Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T, et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol. 2008;316(1):62–73.PubMedCentralPubMedCrossRef
15.
go back to reference Koyama E, Ochiai T, Rountree RB, Kingsley DM, Enomoto-Iwamoto M, Iwamoto M, et al. Synovial joint formation during mouse limb skeletogenesis: roles of Indian hedgehog signaling. Ann N Y Acad Sci. 2007;1116:100–12.PubMedCentralPubMedCrossRef Koyama E, Ochiai T, Rountree RB, Kingsley DM, Enomoto-Iwamoto M, Iwamoto M, et al. Synovial joint formation during mouse limb skeletogenesis: roles of Indian hedgehog signaling. Ann N Y Acad Sci. 2007;1116:100–12.PubMedCentralPubMedCrossRef
16.
go back to reference Dowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJ, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci. 2004;117(Pt 6):889–97.PubMedCrossRef Dowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJ, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci. 2004;117(Pt 6):889–97.PubMedCrossRef
17.
go back to reference Brunet LJ, McMahon JA, McMahon AP, Harland RM. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science. 1998;280(5368):1455–7.PubMedCrossRef Brunet LJ, McMahon JA, McMahon AP, Harland RM. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science. 1998;280(5368):1455–7.PubMedCrossRef
18.
go back to reference Iwamoto M, Higuchi Y, Koyama E, Enomoto-Iwamoto M, Kurisu K, Yeh H, et al. Transcription factor ERG variants and functional diversification of chondrocytes during limb long bone development. J Cell Biol. 2000;150(1):27–40.PubMedCentralPubMedCrossRef Iwamoto M, Higuchi Y, Koyama E, Enomoto-Iwamoto M, Kurisu K, Yeh H, et al. Transcription factor ERG variants and functional diversification of chondrocytes during limb long bone development. J Cell Biol. 2000;150(1):27–40.PubMedCentralPubMedCrossRef
19.
go back to reference Lizarraga G, Lichtler A, Upholt WB, Kosher RA. Studies on the role of Cux1 in regulation of the onset of joint formation in the developing limb. Dev Biol. 2002;243(1):44–54.PubMedCrossRef Lizarraga G, Lichtler A, Upholt WB, Kosher RA. Studies on the role of Cux1 in regulation of the onset of joint formation in the developing limb. Dev Biol. 2002;243(1):44–54.PubMedCrossRef
20.
go back to reference Archer CW, Dowthwaite GP, Francis-West P. Development of synovial joints. Birth Defects Res C Embryo Today. 2003;69(2):144–55.PubMedCrossRef Archer CW, Dowthwaite GP, Francis-West P. Development of synovial joints. Birth Defects Res C Embryo Today. 2003;69(2):144–55.PubMedCrossRef
21.
go back to reference Settle Jr SH, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM. Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol. 2003;254(1):116–30.PubMedCrossRef Settle Jr SH, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM. Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol. 2003;254(1):116–30.PubMedCrossRef
22.
go back to reference Storm EE, Kingsley DM. GDF5 coordinates bone and joint formation during digit development. Dev Biol. 1999;209(1):11–27.PubMedCrossRef Storm EE, Kingsley DM. GDF5 coordinates bone and joint formation during digit development. Dev Biol. 1999;209(1):11–27.PubMedCrossRef
23.
go back to reference Spater D, Hill TP, O’Sullivan RJ, Gruber M, Conner DA, Hartmann C. Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development. 2006;133(15):3039–49.PubMedCrossRef Spater D, Hill TP, O’Sullivan RJ, Gruber M, Conner DA, Hartmann C. Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development. 2006;133(15):3039–49.PubMedCrossRef
24.
go back to reference Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, Yang T. Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 2004;18(19):2404–17.PubMedCentralPubMedCrossRef Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, Yang T. Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 2004;18(19):2404–17.PubMedCentralPubMedCrossRef
25.
go back to reference Gong Y, Krakow D, Marcelino J, Wilkin D, Chitayat D, Babul-Hirji R, et al. Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat Genet. 1999;21(3):302–4.PubMedCrossRef Gong Y, Krakow D, Marcelino J, Wilkin D, Chitayat D, Babul-Hirji R, et al. Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat Genet. 1999;21(3):302–4.PubMedCrossRef
26.
go back to reference Mundy C, Yasuda T, Kinumatsu T, Yamaguchi Y, Iwamoto M, Enomoto-Iwamoto M, et al. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev Biol. 2011;351(1):70–81.PubMedCentralPubMedCrossRef Mundy C, Yasuda T, Kinumatsu T, Yamaguchi Y, Iwamoto M, Enomoto-Iwamoto M, et al. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev Biol. 2011;351(1):70–81.PubMedCentralPubMedCrossRef
28.
go back to reference Rankin EB, Giaccia AJ, Schipani E. A central role for hypoxic signaling in cartilage, bone, and hematopoiesis. Curr Osteoporos Rep. Jun;9(2):46–52. Rankin EB, Giaccia AJ, Schipani E. A central role for hypoxic signaling in cartilage, bone, and hematopoiesis. Curr Osteoporos Rep. Jun;9(2):46–52.
29.
go back to reference Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science. 1996;273(5275):663–6 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].PubMedCrossRef Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science. 1996;273(5275):663–6 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].PubMedCrossRef
30.
go back to reference Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273(5275):613–22.PubMedCrossRef Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273(5275):613–22.PubMedCrossRef
31.
go back to reference Wallis GA. Bone growth: coordinating chondrocyte differentiation. Curr Biol. 1996;6(12):1577–80 [Review].PubMedCrossRef Wallis GA. Bone growth: coordinating chondrocyte differentiation. Curr Biol. 1996;6(12):1577–80 [Review].PubMedCrossRef
32.
go back to reference Koyama E, Leatherman JL, Noji S, Pacifici M. Early chick limb cartilaginous elements possess polarizing activity and express hedgehog-related morphogenetic factors. Dev Dyn. 1996;207(3):344–54.PubMedCrossRef Koyama E, Leatherman JL, Noji S, Pacifici M. Early chick limb cartilaginous elements possess polarizing activity and express hedgehog-related morphogenetic factors. Dev Dyn. 1996;207(3):344–54.PubMedCrossRef
33.
go back to reference Kohno H, Shigeno C, Kasai R, Akiyama H, Iida H, Tsuboyama T, et al. Synovial fluids from patients with osteoarthritis and rheumatoid arthritis contain high levels of parathyroid hormone-related peptide. J Bone Miner Res. 1997;12(5):847–54 [Clinical Trial Controlled Clinical Trial Research Support, Non-U.S. Gov’t].PubMedCrossRef Kohno H, Shigeno C, Kasai R, Akiyama H, Iida H, Tsuboyama T, et al. Synovial fluids from patients with osteoarthritis and rheumatoid arthritis contain high levels of parathyroid hormone-related peptide. J Bone Miner Res. 1997;12(5):847–54 [Clinical Trial Controlled Clinical Trial Research Support, Non-U.S. Gov’t].PubMedCrossRef
34.
go back to reference Nakamura T, Aikawa T, Iwamoto-Enomoto M, Iwamoto M, Higuchi Y, Pacifici M, et al. Induction of osteogenic differentiation by hedgehog proteins. Biochem Biophys Res Commun. 1997;237(2):465–9.PubMedCrossRef Nakamura T, Aikawa T, Iwamoto-Enomoto M, Iwamoto M, Higuchi Y, Pacifici M, et al. Induction of osteogenic differentiation by hedgehog proteins. Biochem Biophys Res Commun. 1997;237(2):465–9.PubMedCrossRef
35.
go back to reference Mountford P, Zevnik B, Duwel A, Nichols J, Li M, Dani C, et al. Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression. Proc Natl Acad Sci U S A. 1994;91(10):4303–7 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRef Mountford P, Zevnik B, Duwel A, Nichols J, Li M, Dani C, et al. Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression. Proc Natl Acad Sci U S A. 1994;91(10):4303–7 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRef
36.
go back to reference Chen X, Macica CM, Dreyer BE, Hammond VE, Hens JR, Philbrick WM, et al. Initial characterization of PTH-related protein gene-driven lacZ expression in the mouse. J Bone Miner Res. 2006;21(1):113–23 [Research Support, N.I.H., Extramural].PubMedCrossRef Chen X, Macica CM, Dreyer BE, Hammond VE, Hens JR, Philbrick WM, et al. Initial characterization of PTH-related protein gene-driven lacZ expression in the mouse. J Bone Miner Res. 2006;21(1):113–23 [Research Support, N.I.H., Extramural].PubMedCrossRef
37.
go back to reference Sampson ER, Hilton MJ, Tian Y, Chen D, Schwarz EM, Mooney RA, et al. Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med. 2011;3(101):101ra93 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRef Sampson ER, Hilton MJ, Tian Y, Chen D, Schwarz EM, Mooney RA, et al. Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med. 2011;3(101):101ra93 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRef
38.
39.
go back to reference Wang Q, Green RP, Zhao G, Ornitz DM. Differential regulation of endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine kinase domains. Development. 2001;128(19):3867–76.PubMed Wang Q, Green RP, Zhao G, Ornitz DM. Differential regulation of endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine kinase domains. Development. 2001;128(19):3867–76.PubMed
40.
41.
go back to reference Ito Y, Yeo JY, Chytil A, Han J, Bringas Jr P, Nakajima A, et al. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development. 2003;130(21):5269–80.PubMedCrossRef Ito Y, Yeo JY, Chytil A, Han J, Bringas Jr P, Nakajima A, et al. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development. 2003;130(21):5269–80.PubMedCrossRef
42.
go back to reference Serra R, Johnson M, Filvaroff EH, LaBorde J, Sheehan DM, Derynck R, et al. Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol. 1997;139(2):541–52.PubMedCentralPubMedCrossRef Serra R, Johnson M, Filvaroff EH, LaBorde J, Sheehan DM, Derynck R, et al. Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol. 1997;139(2):541–52.PubMedCentralPubMedCrossRef
43.
go back to reference Spagnoli A, O’Rear L, Chandler RL, Granero-Molto F, Mortlock DP, Gorska AE, et al. TGF-beta signaling is essential for joint morphogenesis. J Cell Biol. 2007;177(6):1105–17.PubMedCentralPubMedCrossRef Spagnoli A, O’Rear L, Chandler RL, Granero-Molto F, Mortlock DP, Gorska AE, et al. TGF-beta signaling is essential for joint morphogenesis. J Cell Biol. 2007;177(6):1105–17.PubMedCentralPubMedCrossRef
44.
go back to reference Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37(3):275–81.PubMedCrossRef Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37(3):275–81.PubMedCrossRef
45.
go back to reference Jones KB, Sponseller PD, Erkula G, Sakai L, Ramirez F, Dietz 3rd HC, et al. Symposium on the musculoskeletal aspects of Marfan syndrome: meeting report and state of the science. J Orthop Res. 2007;25(3):413–22.PubMedCrossRef Jones KB, Sponseller PD, Erkula G, Sakai L, Ramirez F, Dietz 3rd HC, et al. Symposium on the musculoskeletal aspects of Marfan syndrome: meeting report and state of the science. J Orthop Res. 2007;25(3):413–22.PubMedCrossRef
46.
go back to reference Li T, Longobardi L, Myers TJ, Temple JD, Esposito A and Spagnoli A. Tgfbeta signaling regulates interleukin-36 alpha in joint development and osteoarthritis. Abstract presented to ASBMR meeting. 2013. Li T, Longobardi L, Myers TJ, Temple JD, Esposito A and Spagnoli A. Tgfbeta signaling regulates interleukin-36 alpha in joint development and osteoarthritis. Abstract presented to ASBMR meeting. 2013.
47.
go back to reference Longobardi LLT, Myers TJ, O’Rear L, Ozkan H, Li Y, Contaldo C and Spagnoli A. TGF-β type II receptor/MCP-5 axis: at the crossroad between joint and growth plate development. Dev Cell. 2012. Longobardi LLT, Myers TJ, O’Rear L, Ozkan H, Li Y, Contaldo C and Spagnoli A. TGF-β type II receptor/MCP-5 axis: at the crossroad between joint and growth plate development. Dev Cell. 2012.
48.
go back to reference Hansson EM, Lendahl U, Chapman G. Notch signaling in development and disease. Semin Cancer Biol. 2004;14(5):320–8.PubMedCrossRef Hansson EM, Lendahl U, Chapman G. Notch signaling in development and disease. Semin Cancer Biol. 2004;14(5):320–8.PubMedCrossRef
49.
go back to reference Lai EC. Notch signaling: control of cell communication and cell fate. Development. 2004;131(5):965–73.PubMedCrossRef Lai EC. Notch signaling: control of cell communication and cell fate. Development. 2004;131(5):965–73.PubMedCrossRef
50.
go back to reference Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev. 2006;7(9):678–89.CrossRef Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev. 2006;7(9):678–89.CrossRef
51.
go back to reference Milner LA, Bigas A. Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation. Blood. 1999;93(8):2431–48.PubMed Milner LA, Bigas A. Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation. Blood. 1999;93(8):2431–48.PubMed
52.
go back to reference Chiba S. Notch signaling in stem cell systems. Stem Cells Dayton Ohio. 2006;24(11):2437–47.CrossRef Chiba S. Notch signaling in stem cell systems. Stem Cells Dayton Ohio. 2006;24(11):2437–47.CrossRef
53.
go back to reference Lovschall H, Mitsiadis TA, Poulsen K, Jensen KH, Kjeldsen AL. Coexpression of Notch3 and Rgs5 in the pericyte-vascular smooth muscle cell axis in response to pulp injury. Int J Dev Biol. 2007;51(8):715–21.PubMedCrossRef Lovschall H, Mitsiadis TA, Poulsen K, Jensen KH, Kjeldsen AL. Coexpression of Notch3 and Rgs5 in the pericyte-vascular smooth muscle cell axis in response to pulp injury. Int J Dev Biol. 2007;51(8):715–21.PubMedCrossRef
54.
go back to reference Hayes AJ, Dowthwaite GP, Webster SV, Archer CW. The distribution of Notch receptors and their ligands during articular cartilage development. J Anat. 2003;202(6):495–502.PubMedCentralPubMedCrossRef Hayes AJ, Dowthwaite GP, Webster SV, Archer CW. The distribution of Notch receptors and their ligands during articular cartilage development. J Anat. 2003;202(6):495–502.PubMedCentralPubMedCrossRef
55.
go back to reference Karlsson C, Brantsing C, Egell S, Lindahl A. Notch1, Jagged1, and HES5 are abundantly expressed in osteoarthritis. Cells Tissues Organs. 2008;188(3):287–98.PubMedCrossRef Karlsson C, Brantsing C, Egell S, Lindahl A. Notch1, Jagged1, and HES5 are abundantly expressed in osteoarthritis. Cells Tissues Organs. 2008;188(3):287–98.PubMedCrossRef
56.
go back to reference Sassi N et al. The role of the Notch pathway in healthy and osteoarthritic articular cartilage: from experimental models to ex vivo studies. Arthritis Res Ther. 2011;13(2):208.PubMedCentralPubMedCrossRef Sassi N et al. The role of the Notch pathway in healthy and osteoarthritic articular cartilage: from experimental models to ex vivo studies. Arthritis Res Ther. 2011;13(2):208.PubMedCentralPubMedCrossRef
57.
go back to reference Grogan SP, Miyaki S, Asahara H, D’Lima DD, Lotz MK. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther. 2009;11(3):R85.PubMedCentralPubMedCrossRef Grogan SP, Miyaki S, Asahara H, D’Lima DD, Lotz MK. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther. 2009;11(3):R85.PubMedCentralPubMedCrossRef
58.
go back to reference Henriksson H, Thornemo M, Karlsson C, Hagg O, Junevik K, Lindahl A, et al. Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species. Spine (Phila Pa 1976). 2009;34(21):2278–87.CrossRef Henriksson H, Thornemo M, Karlsson C, Hagg O, Junevik K, Lindahl A, et al. Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species. Spine (Phila Pa 1976). 2009;34(21):2278–87.CrossRef
59.
go back to reference Hayes AJ, Benjamin M, Ralphs JR. Extracellular matrix in development of the intervertebral disc. Matrix Biol. 2001;20(2):107–21.PubMedCrossRef Hayes AJ, Benjamin M, Ralphs JR. Extracellular matrix in development of the intervertebral disc. Matrix Biol. 2001;20(2):107–21.PubMedCrossRef
60.
go back to reference Karystinou A, Dell’Accio F, Kurth TB, Wackerhage H, Khan IM, Archer CW, et al. Distinct mesenchymal progenitor cell subsets in the adult human synovium. Rheumatology (Oxford). 2009;48(9):1057–64.CrossRef Karystinou A, Dell’Accio F, Kurth TB, Wackerhage H, Khan IM, Archer CW, et al. Distinct mesenchymal progenitor cell subsets in the adult human synovium. Rheumatology (Oxford). 2009;48(9):1057–64.CrossRef
61.
go back to reference Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC. Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol. 1994;126(6):1611–23 [Research Support, Non-U.S. Gov’t].PubMedCrossRef Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC. Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol. 1994;126(6):1611–23 [Research Support, Non-U.S. Gov’t].PubMedCrossRef
62.
go back to reference Pessler F, Dai L, Diaz-Torne C, Gomez-Vaquero C, Paessler ME, Zheng DH, et al. The synovitis of “non-inflammatory” orthopaedic arthropathies: a quantitative histological and immunohistochemical analysis. Ann Rheum Dis. 2008;67(8):1184–7.PubMedCrossRef Pessler F, Dai L, Diaz-Torne C, Gomez-Vaquero C, Paessler ME, Zheng DH, et al. The synovitis of “non-inflammatory” orthopaedic arthropathies: a quantitative histological and immunohistochemical analysis. Ann Rheum Dis. 2008;67(8):1184–7.PubMedCrossRef
63.
go back to reference Buckley CD, Filer A, Haworth O, Parsonage G, Salmon M. Defining a role for fibroblasts in the persistence of chronic inflammatory joint disease. Ann Rheum Dis. 2004;63 Suppl 2:ii92–ii5.PubMedCentralPubMed Buckley CD, Filer A, Haworth O, Parsonage G, Salmon M. Defining a role for fibroblasts in the persistence of chronic inflammatory joint disease. Ann Rheum Dis. 2004;63 Suppl 2:ii92–ii5.PubMedCentralPubMed
64.
go back to reference De Bari C, Dell’Accio F, Luyten FP. Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum. 2001;44(1):85–95 [Research Support, Non-U.S. Gov’t].PubMedCrossRef De Bari C, Dell’Accio F, Luyten FP. Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum. 2001;44(1):85–95 [Research Support, Non-U.S. Gov’t].PubMedCrossRef
65.
go back to reference De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten F, et al. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol. 2003;160(6):909–18 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRef De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten F, et al. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol. 2003;160(6):909–18 [Research Support, Non-U.S. Gov’t].PubMedCentralPubMedCrossRef
66.
go back to reference De Bari C, Dell’Accio F, Luyten FP. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum. 2004;50(1):142–50 [In Vitro Research Support, Non-U.S. Gov’t].PubMedCrossRef De Bari C, Dell’Accio F, Luyten FP. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum. 2004;50(1):142–50 [In Vitro Research Support, Non-U.S. Gov’t].PubMedCrossRef
67.
go back to reference De Bari C, Kurth TB, Augello A. Mesenchymal stem cells from development to postnatal joint homeostasis, aging, and disease. Birth Defects Res C Embryol Today. 2010;90(4):257–71 [Research Support, Non-U.S. Gov’t Review].CrossRef De Bari C, Kurth TB, Augello A. Mesenchymal stem cells from development to postnatal joint homeostasis, aging, and disease. Birth Defects Res C Embryol Today. 2010;90(4):257–71 [Research Support, Non-U.S. Gov’t Review].CrossRef
68.
go back to reference Shapiro F, Holtrop ME, Glimcher MJ. Organization and cellular biology of the perichondrial ossification groove of ranvier: a morphological study in rabbits. J Bone Joint Surg Am. 1977;59(6):703–23.PubMed Shapiro F, Holtrop ME, Glimcher MJ. Organization and cellular biology of the perichondrial ossification groove of ranvier: a morphological study in rabbits. J Bone Joint Surg Am. 1977;59(6):703–23.PubMed
69.
go back to reference Li T, Longobardi L, Myers TJ, Temple JD, Chandler RL, Ozkan H, et al. Joint TGF-beta type II receptor-expressing cells: ontogeny and characterization as joint progenitors. Stem Cells Dev. May 1;22(9):1342–59. Li T, Longobardi L, Myers TJ, Temple JD, Chandler RL, Ozkan H, et al. Joint TGF-beta type II receptor-expressing cells: ontogeny and characterization as joint progenitors. Stem Cells Dev. May 1;22(9):1342–59.
71.
go back to reference McCarthy EF. Genetic diseases of bones and joints. Semin Diagn Pathol. Feb;28(1):26–36. McCarthy EF. Genetic diseases of bones and joints. Semin Diagn Pathol. Feb;28(1):26–36.
72.
go back to reference Ramirez F, Dietz HC. Marfan syndrome: from molecular pathogenesis to clinical treatment. Curr Opin Genet Dev. 2007;17(3):252–8.PubMedCrossRef Ramirez F, Dietz HC. Marfan syndrome: from molecular pathogenesis to clinical treatment. Curr Opin Genet Dev. 2007;17(3):252–8.PubMedCrossRef
73.
go back to reference Shirai T, Yorimitsu T, Kiritooshi N, Matsuzaki F, Nakagoshi H. Notch signaling relieves the joint-suppressive activity of defective proventriculus in the Drosophila leg. Dev Biol. 2007;312(1):147–56.PubMedCrossRef Shirai T, Yorimitsu T, Kiritooshi N, Matsuzaki F, Nakagoshi H. Notch signaling relieves the joint-suppressive activity of defective proventriculus in the Drosophila leg. Dev Biol. 2007;312(1):147–56.PubMedCrossRef
74.
go back to reference Ando K, Kanazawa S, Tetsuka T, Ohta S, Jiang X, Tada T, et al. Induction of Notch signaling by tumor necrosis factor in rheumatoid synovial fibroblasts. Oncogene. 2003;22(49):7796–803.PubMedCrossRef Ando K, Kanazawa S, Tetsuka T, Ohta S, Jiang X, Tada T, et al. Induction of Notch signaling by tumor necrosis factor in rheumatoid synovial fibroblasts. Oncogene. 2003;22(49):7796–803.PubMedCrossRef
75.
go back to reference Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 1997;16(3):235–42.PubMedCrossRef Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 1997;16(3):235–42.PubMedCrossRef
76.
go back to reference Boyer J, Crosnier C, Driancourt C, Raynaud N, Gonzales M, Hadchouel M, et al. Expression of mutant JAGGED1 alleles in patients with Alagille syndrome. Hum Genet. 2005;116(6):445–53.PubMedCrossRef Boyer J, Crosnier C, Driancourt C, Raynaud N, Gonzales M, Hadchouel M, et al. Expression of mutant JAGGED1 alleles in patients with Alagille syndrome. Hum Genet. 2005;116(6):445–53.PubMedCrossRef
77.
go back to reference Busse M, Feta A, Presto J, Wilen M, Gronning M, Kjellen L, et al. Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation. J Biol Chem. 2007;282(45):32802–10.PubMedCrossRef Busse M, Feta A, Presto J, Wilen M, Gronning M, Kjellen L, et al. Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation. J Biol Chem. 2007;282(45):32802–10.PubMedCrossRef
78.
go back to reference Mundy C, Yasuda T, Kinumatsu T, Yamaguchi Y, Iwamoto M, Enomoto-Iwamoto M, et al. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev Biol. Mar 1;351(1):70–81. Mundy C, Yasuda T, Kinumatsu T, Yamaguchi Y, Iwamoto M, Enomoto-Iwamoto M, et al. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev Biol. Mar 1;351(1):70–81.
79.
go back to reference Sgariglia F, Candela ME, Huegel J, Jacenko O, Koyama E, Yamaguchi Y, et al. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice. Bone. Nov;57(1):220–31. Sgariglia F, Candela ME, Huegel J, Jacenko O, Koyama E, Yamaguchi Y, et al. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice. Bone. Nov;57(1):220–31.
80.
go back to reference Peterson HA. Multiple hereditary osteochondromata. Clin Orthop. 1989;239:222–30.PubMed Peterson HA. Multiple hereditary osteochondromata. Clin Orthop. 1989;239:222–30.PubMed
81.
82.
go back to reference Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425(6958):577–84.PubMedCrossRef Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425(6958):577–84.PubMedCrossRef
83.
go back to reference Lawler S, Candia AF, Ebner R, Shum L, Lopez AR, Moses HL, et al. The murine type II TGF-beta receptor has a coincident embryonic expression and binding preference for TGF-beta 1. Development. 1994;120(1):165–75.PubMed Lawler S, Candia AF, Ebner R, Shum L, Lopez AR, Moses HL, et al. The murine type II TGF-beta receptor has a coincident embryonic expression and binding preference for TGF-beta 1. Development. 1994;120(1):165–75.PubMed
84.
go back to reference Pelton RW, Saxena B, Jones M, Moses HL, Gold LI. Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol. 1991;115(4):1091–105.PubMedCrossRef Pelton RW, Saxena B, Jones M, Moses HL, Gold LI. Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol. 1991;115(4):1091–105.PubMedCrossRef
85.
go back to reference Millan FA, Denhez F, Kondaiah P, Akhurst RJ. Embryonic gene expression patterns of TGF beta 1, beta 2 and beta 3 suggest different developmental functions in vivo. Development. 1991;111(1):131–43.PubMed Millan FA, Denhez F, Kondaiah P, Akhurst RJ. Embryonic gene expression patterns of TGF beta 1, beta 2 and beta 3 suggest different developmental functions in vivo. Development. 1991;111(1):131–43.PubMed
86.
go back to reference Serra R, Chang C. TGF-beta signaling in human skeletal and patterning disorders. Birth Defects Res C Embryo Today. 2003;69(4):333–51 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].PubMedCrossRef Serra R, Chang C. TGF-beta signaling in human skeletal and patterning disorders. Birth Defects Res C Embryo Today. 2003;69(4):333–51 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].PubMedCrossRef
87.
go back to reference Dunker N, Krieglstein K. Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. Eur J Biochem. 2000;267(24):6982–8.PubMedCrossRef Dunker N, Krieglstein K. Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. Eur J Biochem. 2000;267(24):6982–8.PubMedCrossRef
88.
go back to reference Baffi MO, Slattery E, Sohn P, Moses HL, Chytil A, Serra R. Conditional deletion of the TGF-beta type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones. Dev Biol. 2004;276(1):124–42.PubMedCrossRef Baffi MO, Slattery E, Sohn P, Moses HL, Chytil A, Serra R. Conditional deletion of the TGF-beta type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones. Dev Biol. 2004;276(1):124–42.PubMedCrossRef
89.
go back to reference Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng CX. Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci U S A. 1998;95(16):9378–83.PubMedCentralPubMedCrossRef Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng CX. Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci U S A. 1998;95(16):9378–83.PubMedCentralPubMedCrossRef
90.
go back to reference Yang X, Chen L, Xu X, Li C, Huang C, Deng CX. TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol. 2001;153(1):35–46.PubMedCentralPubMedCrossRef Yang X, Chen L, Xu X, Li C, Huang C, Deng CX. TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol. 2001;153(1):35–46.PubMedCentralPubMedCrossRef
91.
go back to reference Zhu Y, Richardson JA, Parada LF, Graff JM. Smad3 mutant mice develop metastatic colorectal cancer. Cell. 1998;94(6):703–14.PubMedCrossRef Zhu Y, Richardson JA, Parada LF, Graff JM. Smad3 mutant mice develop metastatic colorectal cancer. Cell. 1998;94(6):703–14.PubMedCrossRef
92.
go back to reference Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, et al. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev. 1998;12(1):107–19.PubMedCentralPubMedCrossRef Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, et al. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev. 1998;12(1):107–19.PubMedCentralPubMedCrossRef
93.
go back to reference Ganan Y, Macias D, Duterque-Coquillaud M, Ros MA, Hurle JM. Role of TGF betas and BMPs as signals controlling the position of the digits and the areas of interdigital cell death in the developing chick limb autopod. Development. 1996;122(8):2349–57.PubMed Ganan Y, Macias D, Duterque-Coquillaud M, Ros MA, Hurle JM. Role of TGF betas and BMPs as signals controlling the position of the digits and the areas of interdigital cell death in the developing chick limb autopod. Development. 1996;122(8):2349–57.PubMed
94.
go back to reference Robinson E, Keystone EC, Schall TJ, Gillett N, Fish EN. Chemokine expression in rheumatoid arthritis (RA): evidence of RANTES and macrophage inflammatory protein (MIP)-1 beta production by synovial T cells. Clin Exp Immunol. 1995;101(3):398–407.PubMedCentralPubMedCrossRef Robinson E, Keystone EC, Schall TJ, Gillett N, Fish EN. Chemokine expression in rheumatoid arthritis (RA): evidence of RANTES and macrophage inflammatory protein (MIP)-1 beta production by synovial T cells. Clin Exp Immunol. 1995;101(3):398–407.PubMedCentralPubMedCrossRef
95.
go back to reference Hayashida K, Nanki T, Girschick H, Yavuz S, Ochi T, Lipsky PE. Synovial stromal cells from rheumatoid arthritis patients attract monocytes by producing MCP-1 and IL-8. Arthritis Res. 2001;3(2):118–26.PubMedCentralPubMedCrossRef Hayashida K, Nanki T, Girschick H, Yavuz S, Ochi T, Lipsky PE. Synovial stromal cells from rheumatoid arthritis patients attract monocytes by producing MCP-1 and IL-8. Arthritis Res. 2001;3(2):118–26.PubMedCentralPubMedCrossRef
96.
go back to reference Koch AE, Kunkel SL, Harlow LA, Johnson B, Evanoff HL, Haines GK, et al. Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J Clin Invest. 1992;90(3):772–9.PubMedCentralPubMedCrossRef Koch AE, Kunkel SL, Harlow LA, Johnson B, Evanoff HL, Haines GK, et al. Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J Clin Invest. 1992;90(3):772–9.PubMedCentralPubMedCrossRef
97.
go back to reference De Benedetti F, Pignatti P, Bernasconi S, Gerloni V, Matsushima K, Caporali R, et al. Interleukin 8 and monocyte chemoattractant protein-1 in patients with juvenile rheumatoid arthritis. Relation to onset types, disease activity, and synovial fluid leukocytes. J Rheumatol. 1999;26(2):425–31.PubMed De Benedetti F, Pignatti P, Bernasconi S, Gerloni V, Matsushima K, Caporali R, et al. Interleukin 8 and monocyte chemoattractant protein-1 in patients with juvenile rheumatoid arthritis. Relation to onset types, disease activity, and synovial fluid leukocytes. J Rheumatol. 1999;26(2):425–31.PubMed
98.
go back to reference Pujol JP, Chadjichristos C, Legendre F, Bauge C, Beauchef G, Andriamanalijaona R, et al. Interleukin-1 and transforming growth factor-beta 1 as crucial factors in osteoarthritic cartilage metabolism. Connect Tissue Res. 2008;49(3):293–7.PubMedCrossRef Pujol JP, Chadjichristos C, Legendre F, Bauge C, Beauchef G, Andriamanalijaona R, et al. Interleukin-1 and transforming growth factor-beta 1 as crucial factors in osteoarthritic cartilage metabolism. Connect Tissue Res. 2008;49(3):293–7.PubMedCrossRef
99.
go back to reference Murray LA, Argentieri RL, Farrell FX, Bracht M, Sheng H, Whitaker B, et al. Hyper-responsiveness of IPF/UIP fibroblasts: interplay between TGFbeta1, IL-13 and CCL2. Int J Biochem Cell Biol. 2008;40(10):2174–82.PubMedCrossRef Murray LA, Argentieri RL, Farrell FX, Bracht M, Sheng H, Whitaker B, et al. Hyper-responsiveness of IPF/UIP fibroblasts: interplay between TGFbeta1, IL-13 and CCL2. Int J Biochem Cell Biol. 2008;40(10):2174–82.PubMedCrossRef
100.
go back to reference Szekanecz Z, Halloran MM, Volin MV, Woods JM, Strieter RM, Kenneth Haines 3rd G, et al. Temporal expression of inflammatory cytokines and chemokines in rat adjuvant-induced arthritis. Arthritis Rheum. 2000;43(6):1266–77.PubMedCrossRef Szekanecz Z, Halloran MM, Volin MV, Woods JM, Strieter RM, Kenneth Haines 3rd G, et al. Temporal expression of inflammatory cytokines and chemokines in rat adjuvant-induced arthritis. Arthritis Rheum. 2000;43(6):1266–77.PubMedCrossRef
101.
go back to reference Lara Longobardi JDT, nunzia D’Onofrio, Ozkan H, Esposito A, Willcockson HH, Li T, Myers TJ, Ye P, Moats-Staats BM, Balestrieri M and Spagnoli A. A role for Tgf-betaRII/MCP5 axis during post-traumatic osteoarthritis and potential role od PTHrP in mediating MCP5 effect. Abstract presented at the OARSI meeting, Paris 2014. Lara Longobardi JDT, nunzia D’Onofrio, Ozkan H, Esposito A, Willcockson HH, Li T, Myers TJ, Ye P, Moats-Staats BM, Balestrieri M and Spagnoli A. A role for Tgf-betaRII/MCP5 axis during post-traumatic osteoarthritis and potential role od PTHrP in mediating MCP5 effect. Abstract presented at the OARSI meeting, Paris 2014.
102.
go back to reference Lara Longobardi HO, Temple JD, Li T, Esposito A, Myers TJ, and Spagnoli A. Inhibition of MCP5 signaling decreases osteoarthritis lesions in a murine model of post-traumatic osteoarthritis. Abstract presented at the ASBMR Meeting, Baltimore, MD, USA. 2013. Lara Longobardi HO, Temple JD, Li T, Esposito A, Myers TJ, and Spagnoli A. Inhibition of MCP5 signaling decreases osteoarthritis lesions in a murine model of post-traumatic osteoarthritis. Abstract presented at the ASBMR Meeting, Baltimore, MD, USA. 2013.
103.
Metadata
Title
Synovial Joints: from Development to Homeostasis
Authors
Lara Longobardi
Tieshi Li
Lidia Tagliafierro
Joseph D. Temple
Helen H. Willcockson
Ping Ye
Alessandra Esposito
Fuhua Xu
Anna Spagnoli
Publication date
01-02-2015
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 1/2015
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-014-0247-7

Other articles of this Issue 1/2015

Current Osteoporosis Reports 1/2015 Go to the issue

Nutrition, Exercise, and Lifestyle in Osteoporosis (CM Weaver and R Daly, Section Editors)

Lifestyle and Osteoporosis

Bone and Diabetes (AV Schwartz and P Vestergaard, Section Editors)

Diabetes Medications and Bone

Orthopedic Management of Fractures (D Little and T Miclau, Section Editors)

Osteoporotic Fracture Models

Muscle and Bone (L Bonewald and M Hamrick, Section Editors)

Biomechanical Aspects of the Muscle-Bone Interaction

Orthopedic Management of Fractures (D Little and T Miclau, Section Editors)

Fragility Fracture Programs: Are They Effective and What Is the Surgeon’s Role?

Orthopedic Management of Fractures (D Little and T Miclau, Section Editors)

Internal Fixation of Osteoporotic Fractures