Skip to main content
Top
Published in: Current Osteoporosis Reports 1/2014

01-03-2014 | Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)

Regulatory Mechanisms of RANKL Presentation to Osteoclast Precursors

Authors: Masashi Honma, Yuki Ikebuchi, Yoshiaki Kariya, Hiroshi Suzuki

Published in: Current Osteoporosis Reports | Issue 1/2014

Login to get access

Abstract

It is important to understand the molecular mechanisms regulating osteoclast formation, as excess activation of osteoclasts is associated with various osteopenic disorders. Receptor activator of nuclear factor kappa B (RANKL) is a central player in osteoclastogenesis. Recent findings suggest that osteocytes are the major supplier of RANKL to osteoclast precursors. It has also been suggested that osteocyte cell death upregulates the RANKL/osteoprotegerin (OPG) ratio in viable osteocytes adjacent to apoptotic osteocytes in areas of bone microdamage, thus, contributing to localized osteoclast formation. Indeed, viable osteocytes can provide RANKL through direct interactions with osteoclast precursors at osteocyte dendritic processes. In addition, OPG tightly regulates RANKL cell surface presentation in osteocytes, which contributes to the inhibition of RANKL signaling, as well as the decoy receptor function of OPG. By contrast, the physiological role of RANKL in osteoblasts is yet to be clarified, although similar mechanisms of regulation are observed in both osteocytes and osteoblasts.
Literature
2.
go back to reference Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 2002;8(3):147–59.PubMedCrossRef Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 2002;8(3):147–59.PubMedCrossRef
4.
go back to reference Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13(18):2412–24.PubMedCrossRef Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13(18):2412–24.PubMedCrossRef
5.
go back to reference Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397(6717):315–23.PubMedCrossRef Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397(6717):315–23.PubMedCrossRef
7.
go back to reference Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT, et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res. 2004;19(7):1059–66. doi:10.1359/JBMR.040305.PubMedCrossRef Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT, et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res. 2004;19(7):1059–66. doi:10.​1359/​JBMR.​040305.PubMedCrossRef
8.
go back to reference Silva I, Branco JC. Denosumab: recent update in postmenopausal osteoporosis. Acta Reumatologica Portuguesa. 2012;37(4):302–13.PubMed Silva I, Branco JC. Denosumab: recent update in postmenopausal osteoporosis. Acta Reumatologica Portuguesa. 2012;37(4):302–13.PubMed
9.
go back to reference Lewiecki EM, Miller PD, McClung MR, Cohen SB, Bolognese MA, Liu Y, et al. Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD. J Bone Miner Res. 2007;22(12):1832–41.PubMedCrossRef Lewiecki EM, Miller PD, McClung MR, Cohen SB, Bolognese MA, Liu Y, et al. Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD. J Bone Miner Res. 2007;22(12):1832–41.PubMedCrossRef
10.
go back to reference Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;3(6):889–901.PubMedCrossRef Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;3(6):889–901.PubMedCrossRef
12.
go back to reference Hikita A, Kadono Y, Chikuda H, Fukuda A, Wakeyama H, Yasuda H, et al. Identification of an alternatively spliced variant of Ca2+-promoted Ras inactivator as a possible regulator of RANKL shedding. J Biol Chem. 2005;280(50):41700–6.PubMedCrossRef Hikita A, Kadono Y, Chikuda H, Fukuda A, Wakeyama H, Yasuda H, et al. Identification of an alternatively spliced variant of Ca2+-promoted Ras inactivator as a possible regulator of RANKL shedding. J Biol Chem. 2005;280(50):41700–6.PubMedCrossRef
13.
go back to reference Wong BR, Josien R, Lee SY, Vologodskaia M, Steinman RM, Choi Y. The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J Biol Chem. 1998;273(43):28355–9.PubMedCrossRef Wong BR, Josien R, Lee SY, Vologodskaia M, Steinman RM, Choi Y. The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J Biol Chem. 1998;273(43):28355–9.PubMedCrossRef
14.
go back to reference Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells. 1999;4(6):353–62.PubMedCrossRef Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells. 1999;4(6):353–62.PubMedCrossRef
16.
go back to reference Huang H, Chang EJ, Ryu J, Lee ZH, Lee Y, Kim HH. Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway. Biochem Biophys Res Commun. 2006;351(1):99–105.PubMedCrossRef Huang H, Chang EJ, Ryu J, Lee ZH, Lee Y, Kim HH. Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway. Biochem Biophys Res Commun. 2006;351(1):99–105.PubMedCrossRef
17.
go back to reference Kim K, Kim JH, Lee J, Jin HM, Lee SH, Fisher DE, et al. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem. 2005;280(42):35209–16. doi:10.1074/jbc.M505815200.PubMedCrossRef Kim K, Kim JH, Lee J, Jin HM, Lee SH, Fisher DE, et al. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem. 2005;280(42):35209–16. doi:10.​1074/​jbc.​M505815200.PubMedCrossRef
18.
go back to reference Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZ, et al. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem. 2004;279(25):26475–80. doi:10.1074/jbc.M313973200.PubMedCrossRef Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZ, et al. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem. 2004;279(25):26475–80. doi:10.​1074/​jbc.​M313973200.PubMedCrossRef
20.
go back to reference Jimi E, Nakamura I, Amano H, Taguchi Y, Tsurukai T, Tamura M, et al. Osteoclast function is activated by osteoblastic cells through a mechanism involving cell-to-cell contact. Endocrinology. 1996;137(8):2187–90. Jimi E, Nakamura I, Amano H, Taguchi Y, Tsurukai T, Tamura M, et al. Osteoclast function is activated by osteoblastic cells through a mechanism involving cell-to-cell contact. Endocrinology. 1996;137(8):2187–90.
23.••
go back to reference Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4. doi:10.1038/nm.2452. This study showed that osteocytes are the major source of RANKL in physiological osteoclastogenesis.PubMedCrossRef Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4. doi:10.​1038/​nm.​2452. This study showed that osteocytes are the major source of RANKL in physiological osteoclastogenesis.PubMedCrossRef
24.••
go back to reference Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17(10):1235–41. doi:10.1038/nm.2448. This study showed that osteocytes are the major source of RANKL in physiological osteoclastogenesis.PubMedCentralPubMedCrossRef Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17(10):1235–41. doi:10.​1038/​nm.​2448. This study showed that osteocytes are the major source of RANKL in physiological osteoclastogenesis.PubMedCentralPubMedCrossRef
25.
go back to reference Cardoso L, Herman BC, Verborgt O, Laudier D, Majeska RJ, Schaffler MB. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res. 2009;24(4):597–605. doi:10.1359/jbmr.081210.PubMedCrossRef Cardoso L, Herman BC, Verborgt O, Laudier D, Majeska RJ, Schaffler MB. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res. 2009;24(4):597–605. doi:10.​1359/​jbmr.​081210.PubMedCrossRef
28.•
go back to reference Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012;50(5):1115–22. doi:10.1016/j.bone.2012.01.025. This study showed that RANKL/OPG ratio is up-regulated in osteocytes adjacent to the damaged site of bone.PubMedCentralPubMedCrossRef Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012;50(5):1115–22. doi:10.​1016/​j.​bone.​2012.​01.​025. This study showed that RANKL/OPG ratio is up-regulated in osteocytes adjacent to the damaged site of bone.PubMedCentralPubMedCrossRef
29.
go back to reference Tomkinson A, Reeve J, Shaw RW, Noble BS. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab. 1997;82(9):3128–35.PubMed Tomkinson A, Reeve J, Shaw RW, Noble BS. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab. 1997;82(9):3128–35.PubMed
31.
go back to reference Kamioka H, Honjo T, Takano-Yamamoto T. A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone. 2001;28(2):145–9.PubMedCrossRef Kamioka H, Honjo T, Takano-Yamamoto T. A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone. 2001;28(2):145–9.PubMedCrossRef
32.•
go back to reference Honma M, Ikebuchi Y, Kariya Y, Hayashi M, Hayashi N, Aoki S, et al. RANKL subcellular trafficking and regulatory mechanisms in osteocytes. J Bone Miner Res. 2013;28(9):1936–49. doi:10.1002/jbmr.1941. This study showed that osteocytes provide RANKL to osteoclast precursors through direct cell-cell interactions.PubMedCrossRef Honma M, Ikebuchi Y, Kariya Y, Hayashi M, Hayashi N, Aoki S, et al. RANKL subcellular trafficking and regulatory mechanisms in osteocytes. J Bone Miner Res. 2013;28(9):1936–49. doi:10.​1002/​jbmr.​1941. This study showed that osteocytes provide RANKL to osteoclast precursors through direct cell-cell interactions.PubMedCrossRef
35.
go back to reference Aoki S, Honma M, Kariya Y, Nakamichi Y, Ninomiya T, Takahashi N, et al. Function of OPG as a traffic regulator for RANKL is crucial for controlled osteoclastogenesis. J Bone Miner Res. 2010;25(9):1907–21. doi:10.1002/jbmr.89.PubMedCrossRef Aoki S, Honma M, Kariya Y, Nakamichi Y, Ninomiya T, Takahashi N, et al. Function of OPG as a traffic regulator for RANKL is crucial for controlled osteoclastogenesis. J Bone Miner Res. 2010;25(9):1907–21. doi:10.​1002/​jbmr.​89.PubMedCrossRef
36.
go back to reference Fukuda M. Regulation of secretory vesicle traffic by Rab small GTPases. Cell Mol Life Sci. 2008;65(18):2801–13.PubMedCrossRef Fukuda M. Regulation of secretory vesicle traffic by Rab small GTPases. Cell Mol Life Sci. 2008;65(18):2801–13.PubMedCrossRef
37.
38.
go back to reference Kariya Y, Honma M, Hanamura A, Aoki S, Ninomiya T, Nakamichi Y, et al. Rab27a and Rab27b are involved in stimulation-dependent RANKL release from secretory lysosomes in osteoblastic cells. J Bone Miner Res. 2010. doi:10.1002/jbmr.268.PubMed Kariya Y, Honma M, Hanamura A, Aoki S, Ninomiya T, Nakamichi Y, et al. Rab27a and Rab27b are involved in stimulation-dependent RANKL release from secretory lysosomes in osteoblastic cells. J Bone Miner Res. 2010. doi:10.​1002/​jbmr.​268.PubMed
39.
go back to reference Chavas L, Ihara K, Kawasaki M, Torii S, Uejima T, Kato R, et al. Elucidation of Rab27 recruitment by its effectors: structure of Rab27a bound to Exophilin4/Slp2-a. Structure. 2008;16(10):1468–77.PubMedCrossRef Chavas L, Ihara K, Kawasaki M, Torii S, Uejima T, Kato R, et al. Elucidation of Rab27 recruitment by its effectors: structure of Rab27a bound to Exophilin4/Slp2-a. Structure. 2008;16(10):1468–77.PubMedCrossRef
40.
go back to reference Hume AN, Ushakov DS, Tarafder AK, Ferenczi MA, Seabra MC. Rab27a and MyoVa are the primary Mlph interactors regulating melanosome transport in melanocytes. J Cell Sci. 2007;120(Pt 17):3111–22.PubMedCrossRef Hume AN, Ushakov DS, Tarafder AK, Ferenczi MA, Seabra MC. Rab27a and MyoVa are the primary Mlph interactors regulating melanosome transport in melanocytes. J Cell Sci. 2007;120(Pt 17):3111–22.PubMedCrossRef
41.
go back to reference Stinchcombe J, Barral D, Mules E, Booth S, Hume A, Machesky L, et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J Cell Biol. 2001;152(4):825–34.PubMedCrossRef Stinchcombe J, Barral D, Mules E, Booth S, Hume A, Machesky L, et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J Cell Biol. 2001;152(4):825–34.PubMedCrossRef
42.
go back to reference Stinchcombe JC, Bossi G, Booth S, Griffiths GM. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity. 2001;15(5):751–61.PubMedCrossRef Stinchcombe JC, Bossi G, Booth S, Griffiths GM. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity. 2001;15(5):751–61.PubMedCrossRef
43.
go back to reference Barral D, Ramalho J, Anders R, Hume A, Knapton H, Tolmachova T, et al. Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J Clin Invest. 2002;110(2):247–57.PubMedCentralPubMedCrossRef Barral D, Ramalho J, Anders R, Hume A, Knapton H, Tolmachova T, et al. Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J Clin Invest. 2002;110(2):247–57.PubMedCentralPubMedCrossRef
44.
go back to reference Fukuda M. Rab27 and its effectors in secretory granule exocytosis: a novel docking machinery composed of a Rab27.effector complex. Biochem Soc Trans. 2006;34(Pt 5):691–5.PubMed Fukuda M. Rab27 and its effectors in secretory granule exocytosis: a novel docking machinery composed of a Rab27.effector complex. Biochem Soc Trans. 2006;34(Pt 5):691–5.PubMed
Metadata
Title
Regulatory Mechanisms of RANKL Presentation to Osteoclast Precursors
Authors
Masashi Honma
Yuki Ikebuchi
Yoshiaki Kariya
Hiroshi Suzuki
Publication date
01-03-2014
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 1/2014
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-014-0189-0

Other articles of this Issue 1/2014

Current Osteoporosis Reports 1/2014 Go to the issue

Regenerative Biology and Medicine in Osteoporosis (EM Schwartz and RE Guldberg, Section Editors)

Biomaterial Scaffolds for Treating Osteoporotic Bone

Osteoimmunology (D Novack and G Schett, Section Editors)

Autoantibody-Mediated Bone Loss

Regenerative Biology and Medicine in Osteoporosis (EM Schwartz and RE Guldberg, Section Editors)

Stem Cell Therapy for Osteoporosis

Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)

Apoptotic Osteocytes and the Control of Targeted Bone Resorption

Regenerative Biology and Medicine in Osteoporosis (EM Schwartz and RE Guldberg, Section Editors)

Local Strategies to Prevent and Treat Osteoporosis