Skip to main content
Top
Published in: Current Oncology Reports 4/2013

01-08-2013 | Sarcomas (SR Patel, Section Editor)

Exploring Novel Therapeutic Targets in GIST: Focus on the PI3K/Akt/mTOR Pathway

Author: Shreyaskumar Patel

Published in: Current Oncology Reports | Issue 4/2013

Login to get access

Abstract

Gastrointestinal stromal tumors (GISTs) are the most common soft tissue sarcoma, and most feature abnormalities in two genes encoding the receptor tyrosine kinases (RTKs), KIT, and PDGFRA. The RTK inhibitor imatinib revolutionized treatment in GIST; however, drug resistance remains a challenge. Constitutive autophosphorylation of RTKs is linked to phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway hyperactivation, which is central to oncogenic signaling, and known to be dysregulated in GIST. Preclinical experiments have confirmed that inhibiting the PI3K/Akt/mTOR pathway is a rational target for therapy. Early studies using mTOR inhibitors have shown limited success, which may be due to the activation of Akt that occurs following mTORC1 inhibition. Therefore, targeting PI3K or Akt, which lie upstream of mTORC1, may translate into more complete pathway inhibition. Several treatment strategies are currently being developed in phase 1 and 2 clinical trials. Compounds currently in development include pan-Class I PI3K inhibitors, dual PI3K/mTOR inhibitors, and Akt inhibitors. The aim of this review is to highlight the evidence for targeting PI3K/Akt/mTOR-dependent mechanisms in GIST and to evaluate the existing preclinical and clinical data supporting this strategy.
Literature
1.
go back to reference Ducimetiere F, Lurkin A, Ranchere-Vince D, et al. Incidence rate, epidemiology of sarcoma and molecular biology. Preliminary results from EMS study in the Rhone-Alpes region. Bull Cancer. 2010;97:629–41.PubMed Ducimetiere F, Lurkin A, Ranchere-Vince D, et al. Incidence rate, epidemiology of sarcoma and molecular biology. Preliminary results from EMS study in the Rhone-Alpes region. Bull Cancer. 2010;97:629–41.PubMed
2.
go back to reference Schoffski P, Reichardt P, Blay JY, et al. A phase I-II study of everolimus (RAD001) in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors. Ann Oncol. 2010;21:1990–8.PubMedCrossRef Schoffski P, Reichardt P, Blay JY, et al. A phase I-II study of everolimus (RAD001) in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors. Ann Oncol. 2010;21:1990–8.PubMedCrossRef
4.
go back to reference Cichoz-Lach H, Kasztelan-Szczerbinska B, Slomka M. Gastrointestinal stromal tumors: epidemiology, clinical picture, diagnosis, prognosis and treatment. Pol Arch Med Wewn. 2008;118:216–21.PubMed Cichoz-Lach H, Kasztelan-Szczerbinska B, Slomka M. Gastrointestinal stromal tumors: epidemiology, clinical picture, diagnosis, prognosis and treatment. Pol Arch Med Wewn. 2008;118:216–21.PubMed
5.
go back to reference Sircar K, Hewlett BR, Huizinga JD, et al. Interstitial cells of Cajal as precursors of gastrointestinal stromal tumors. Am J Surg Pathol. 1999;23:377–89.PubMedCrossRef Sircar K, Hewlett BR, Huizinga JD, et al. Interstitial cells of Cajal as precursors of gastrointestinal stromal tumors. Am J Surg Pathol. 1999;23:377–89.PubMedCrossRef
6.
go back to reference Fletcher CD, Berman JJ, Corless C, et al. Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol. 2002;33:459–65.PubMedCrossRef Fletcher CD, Berman JJ, Corless C, et al. Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol. 2002;33:459–65.PubMedCrossRef
7.
go back to reference Dematteo RP, Ballman KV, Antonescu CR, et al. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;373:1097–104.PubMedCrossRef Dematteo RP, Ballman KV, Antonescu CR, et al. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;373:1097–104.PubMedCrossRef
8.
go back to reference Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279:577–80.PubMedCrossRef Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279:577–80.PubMedCrossRef
9.
go back to reference Hirota S, Ohashi A, Nishida T, et al. Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology. 2003;125:660–7.PubMedCrossRef Hirota S, Ohashi A, Nishida T, et al. Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology. 2003;125:660–7.PubMedCrossRef
10.
go back to reference Sommer G, Agosti V, Ehlers I, et al. Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase. Proc Natl Acad Sci USA. 2003;100:6706–11.PubMedCrossRef Sommer G, Agosti V, Ehlers I, et al. Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase. Proc Natl Acad Sci USA. 2003;100:6706–11.PubMedCrossRef
11.
go back to reference Maleddu A, Pantaleo MA, Nannini M, Biasco G. The role of mutational analysis of KIT and PDGFRA in gastrointestinal stromal tumors in a clinical setting. J Transl Med. 2011;9:75.PubMedCrossRef Maleddu A, Pantaleo MA, Nannini M, Biasco G. The role of mutational analysis of KIT and PDGFRA in gastrointestinal stromal tumors in a clinical setting. J Transl Med. 2011;9:75.PubMedCrossRef
12.
go back to reference Cohen MH, Farrell A, Justice R, Pazdur R. Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Oncologist. 2009;14:174–80.PubMedCrossRef Cohen MH, Farrell A, Justice R, Pazdur R. Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Oncologist. 2009;14:174–80.PubMedCrossRef
13.
go back to reference Plaat BE, Hollema H, Molenaar WM, et al. Soft tissue leiomyosarcomas and malignant gastrointestinal stromal tumors: differences in clinical outcome and expression of multidrug resistance proteins. J Clin Oncol. 2000;18:3211–20.PubMed Plaat BE, Hollema H, Molenaar WM, et al. Soft tissue leiomyosarcomas and malignant gastrointestinal stromal tumors: differences in clinical outcome and expression of multidrug resistance proteins. J Clin Oncol. 2000;18:3211–20.PubMed
14.
go back to reference Gold JS, Dematteo RP. Combined surgical and molecular therapy: the gastrointestinal stromal tumor model. Ann Surg. 2006;244:176–84.PubMedCrossRef Gold JS, Dematteo RP. Combined surgical and molecular therapy: the gastrointestinal stromal tumor model. Ann Surg. 2006;244:176–84.PubMedCrossRef
15.
go back to reference Gramza AW, Corless CL, Heinrich MC. Resistance to tyrosine kinase inhibitors in gastrointestinal stromal tumors. Clin Cancer Res. 2009;15:7510–8.PubMedCrossRef Gramza AW, Corless CL, Heinrich MC. Resistance to tyrosine kinase inhibitors in gastrointestinal stromal tumors. Clin Cancer Res. 2009;15:7510–8.PubMedCrossRef
16.
go back to reference Goodman VL, Rock EP, Dagher R, et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res. 2007;13:1367–73.PubMedCrossRef Goodman VL, Rock EP, Dagher R, et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res. 2007;13:1367–73.PubMedCrossRef
17.
go back to reference Demetri GD, van Oosterom AT, Garrett CR, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368:1329–38.PubMedCrossRef Demetri GD, van Oosterom AT, Garrett CR, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368:1329–38.PubMedCrossRef
18.
go back to reference Leigl B, Fletcher JA, Corless CL, et al. Correlation between KIT mutations and sunitinib (SU) resistance in GIST [abstract 92]. Presented at the 2008 ASCO Gastrointestinal Cancers Symposium. Orlando, Florida, USA; January 25–27, 2008. Leigl B, Fletcher JA, Corless CL, et al. Correlation between KIT mutations and sunitinib (SU) resistance in GIST [abstract 92]. Presented at the 2008 ASCO Gastrointestinal Cancers Symposium. Orlando, Florida, USA; January 25–27, 2008.
19.
go back to reference Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347:472–80.PubMedCrossRef Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347:472–80.PubMedCrossRef
20.
go back to reference Verweij J, Casali PG, Zalcberg J, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004;364:1127–34.PubMedCrossRef Verweij J, Casali PG, Zalcberg J, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004;364:1127–34.PubMedCrossRef
21.
go back to reference Heinrich MC, Corless CL, Blanke CD, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol. 2006;24:4764–74.PubMedCrossRef Heinrich MC, Corless CL, Blanke CD, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol. 2006;24:4764–74.PubMedCrossRef
22.
go back to reference •• Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology Nat Rev Cancer. 2011;11:865–78. A comprehensive review of GIST focusing on pathologic characteristics, oncogenic mutations, and mechanisms of resistance. •• Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology Nat Rev Cancer. 2011;11:865–78. A comprehensive review of GIST focusing on pathologic characteristics, oncogenic mutations, and mechanisms of resistance.
23.
go back to reference Debiec-Rychter M, Cools J, Dumez H, et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology. 2005;128:270–9.PubMedCrossRef Debiec-Rychter M, Cools J, Dumez H, et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology. 2005;128:270–9.PubMedCrossRef
24.
go back to reference Antonescu CR, Besmer P, Guo T, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res. 2005;11:4182–90.PubMedCrossRef Antonescu CR, Besmer P, Guo T, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res. 2005;11:4182–90.PubMedCrossRef
25.
go back to reference Chen LL, Trent JC, Wu EF, et al. A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res. 2004;64:5913–9.PubMedCrossRef Chen LL, Trent JC, Wu EF, et al. A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res. 2004;64:5913–9.PubMedCrossRef
26.
go back to reference Lim KH, Huang MJ, Chen LT, et al. Molecular analysis of secondary kinase mutations in imatinib-resistant gastrointestinal stromal tumors. Med Oncol. 2008;25:207–13.PubMedCrossRef Lim KH, Huang MJ, Chen LT, et al. Molecular analysis of secondary kinase mutations in imatinib-resistant gastrointestinal stromal tumors. Med Oncol. 2008;25:207–13.PubMedCrossRef
27.
go back to reference Ou WB, Fletcher CDM, Demetri GD, Fletcher JA. Protein kinase C theta (PKCθ) and c-Jun regulate proliferation through cyclin D1 in KIT-independent gastrointestinal stromal tumors [abstract 952]. Presented at the 102nd Annual Meeting of the AACR. Orlando, Florida, USA; April 2–6, 2011. Ou WB, Fletcher CDM, Demetri GD, Fletcher JA. Protein kinase C theta (PKCθ) and c-Jun regulate proliferation through cyclin D1 in KIT-independent gastrointestinal stromal tumors [abstract 952]. Presented at the 102nd Annual Meeting of the AACR. Orlando, Florida, USA; April 2–6, 2011.
28.
go back to reference Tarn C, Rink L, Merkel E, et al. Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors. Proc Natl Acad Sci USA. 2008;105:8387–92.PubMedCrossRef Tarn C, Rink L, Merkel E, et al. Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors. Proc Natl Acad Sci USA. 2008;105:8387–92.PubMedCrossRef
29.
go back to reference Blanke CD, Demetri GD, von Mehren M, et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol. 2008;26:620–5.PubMedCrossRef Blanke CD, Demetri GD, von Mehren M, et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol. 2008;26:620–5.PubMedCrossRef
30.
go back to reference Bauer S, Duensing A, Demetri GD, Fletcher JA. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene. 2007;26:7560–8.PubMedCrossRef Bauer S, Duensing A, Demetri GD, Fletcher JA. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene. 2007;26:7560–8.PubMedCrossRef
31.
go back to reference Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer. 2011;11:289–301.PubMedCrossRef Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer. 2011;11:289–301.PubMedCrossRef
32.
go back to reference Katso R, Okkenhaug K, Ahmadi K, et al. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2001;17:615–75.PubMedCrossRef Katso R, Okkenhaug K, Ahmadi K, et al. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2001;17:615–75.PubMedCrossRef
33.
34.
go back to reference Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–62.PubMedCrossRef Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–62.PubMedCrossRef
35.
36.
go back to reference Mahalingam D, Mita A, Sankhala K, et al. Targeting sarcomas: novel biological agents and future perspectives. Curr Drug Targets. 2009;10:937–49.PubMedCrossRef Mahalingam D, Mita A, Sankhala K, et al. Targeting sarcomas: novel biological agents and future perspectives. Curr Drug Targets. 2009;10:937–49.PubMedCrossRef
37.
go back to reference Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J Biol Chem. 1998;273:13375–8.PubMedCrossRef Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J Biol Chem. 1998;273:13375–8.PubMedCrossRef
38.
go back to reference Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8:627–44.PubMedCrossRef Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8:627–44.PubMedCrossRef
39.
go back to reference Sridharan S, Basu A. S6 kinase 2 promotes breast cancer cell survival via Akt. Cancer Res. 2011;71:2590–9.PubMedCrossRef Sridharan S, Basu A. S6 kinase 2 promotes breast cancer cell survival via Akt. Cancer Res. 2011;71:2590–9.PubMedCrossRef
40.
go back to reference Pastor MD, Garcia-Yebenes I, Fradejas N, et al. mTOR/S6 kinase pathway contributes to astrocyte survival during ischemia. J Biol Chem. 2009;284:22067–78.PubMedCrossRef Pastor MD, Garcia-Yebenes I, Fradejas N, et al. mTOR/S6 kinase pathway contributes to astrocyte survival during ischemia. J Biol Chem. 2009;284:22067–78.PubMedCrossRef
41.
go back to reference Glantschnig H, Fisher JE, Wesolowski G, et al. M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ. 2003;10:1165–77.PubMedCrossRef Glantschnig H, Fisher JE, Wesolowski G, et al. M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ. 2003;10:1165–77.PubMedCrossRef
42.
go back to reference Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta. 2010;1804:433–9.PubMedCrossRef Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta. 2010;1804:433–9.PubMedCrossRef
43.
go back to reference •• Rios-Moreno MJ, Jaramillo S, Diaz-Delgado M, et al. Differential activation of MAPK and PI3K/AKT/mTOR pathways and IGF1R expression in gastrointestinal stromal tumors. Anticancer Res. 2011;31:3019–25. Characterizes genetic alterations of the PI3K and MAPK pathways in primary wild-type and mutated GIST samples. PubMed •• Rios-Moreno MJ, Jaramillo S, Diaz-Delgado M, et al. Differential activation of MAPK and PI3K/AKT/mTOR pathways and IGF1R expression in gastrointestinal stromal tumors. Anticancer Res. 2011;31:3019–25. Characterizes genetic alterations of the PI3K and MAPK pathways in primary wild-type and mutated GIST samples. PubMed
44.
go back to reference Sapi Z, Fule T, Hajdu M, et al. The activated targets of mTOR signaling pathway are characteristic for PDGFRA mutant and wild-type rather than KIT mutant GISTs. Diagn Mol Pathol. 2011;20:22–33.PubMedCrossRef Sapi Z, Fule T, Hajdu M, et al. The activated targets of mTOR signaling pathway are characteristic for PDGFRA mutant and wild-type rather than KIT mutant GISTs. Diagn Mol Pathol. 2011;20:22–33.PubMedCrossRef
45.
go back to reference Steelman LS, Chappell WH, Abrams SL, et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging Aging (Albany NY). 2011;3:192–222. Steelman LS, Chappell WH, Abrams SL, et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging Aging (Albany NY). 2011;3:192–222.
46.
go back to reference Heinrich MC, Corless CL, Duensing A, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299:708–10.PubMedCrossRef Heinrich MC, Corless CL, Duensing A, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299:708–10.PubMedCrossRef
47.
go back to reference Daniels M, Lurkin I, Pauli R, et al. Spectrum of KIT/PDGFRA/BRAF mutations and Phosphatidylinositol-3-Kinase pathway gene alterations in gastrointestinal stromal tumors (GIST). Cancer Lett. 2011;312:43–54.PubMedCrossRef Daniels M, Lurkin I, Pauli R, et al. Spectrum of KIT/PDGFRA/BRAF mutations and Phosphatidylinositol-3-Kinase pathway gene alterations in gastrointestinal stromal tumors (GIST). Cancer Lett. 2011;312:43–54.PubMedCrossRef
48.
go back to reference Quattrone A, Wozniak A, Dewaele B, et al. PTEN inactivation in gastrointestinal stromal tumors (GIST): possible relevance for treatment of imatinib-resistant disease. Mol Cancer Ther. 2011;10:A166. abstract.CrossRef Quattrone A, Wozniak A, Dewaele B, et al. PTEN inactivation in gastrointestinal stromal tumors (GIST): possible relevance for treatment of imatinib-resistant disease. Mol Cancer Ther. 2011;10:A166. abstract.CrossRef
49.
go back to reference •• Wang CM, Huang K, Zhou Y, et al. Molecular mechanisms of secondary imatinib resistance in patients with gastrointestinal stromal tumors. J Cancer Res Clin Oncol. 2010;136:1065–71. Assesses the molecular and genomic changes in imatinib-resistant GISTs, providing rationale for targeting the PI3K/Akt/mTOR pathway in this cancer type. PubMedCrossRef •• Wang CM, Huang K, Zhou Y, et al. Molecular mechanisms of secondary imatinib resistance in patients with gastrointestinal stromal tumors. J Cancer Res Clin Oncol. 2010;136:1065–71. Assesses the molecular and genomic changes in imatinib-resistant GISTs, providing rationale for targeting the PI3K/Akt/mTOR pathway in this cancer type. PubMedCrossRef
50.
go back to reference Ricci R, Maggiano N, Castri F, et al. Role of PTEN in gastrointestinal stromal tumor progression Arch Pathol Lab Med. 2004;128:421–5. Ricci R, Maggiano N, Castri F, et al. Role of PTEN in gastrointestinal stromal tumor progression Arch Pathol Lab Med. 2004;128:421–5.
51.
go back to reference Yang J, Ikezoe T, Nishioka C, et al. Long-term exposure of gastrointestinal stromal tumor cells to sunitinib induces epigenetic silencing of the PTEN gene. Int J Cancer. 2012;130:959–66.PubMedCrossRef Yang J, Ikezoe T, Nishioka C, et al. Long-term exposure of gastrointestinal stromal tumor cells to sunitinib induces epigenetic silencing of the PTEN gene. Int J Cancer. 2012;130:959–66.PubMedCrossRef
52.
go back to reference Markman B, Dienstmann R, Tabernero J. Targeting the PI3K/Akt/mTOR pathway – beyond rapalogs. Oncotarget. 2010;1:530–43.PubMed Markman B, Dienstmann R, Tabernero J. Targeting the PI3K/Akt/mTOR pathway – beyond rapalogs. Oncotarget. 2010;1:530–43.PubMed
53.
go back to reference Reichardt P, Reichardt A, Pink D. Molecular targeted therapy of gastrointestinal stromal tumors. Curr Cancer Drug Targets. 2011;11:688–97.PubMedCrossRef Reichardt P, Reichardt A, Pink D. Molecular targeted therapy of gastrointestinal stromal tumors. Curr Cancer Drug Targets. 2011;11:688–97.PubMedCrossRef
54.
go back to reference • Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010;28:1075–83. An in-depth review describing PI3K/Akt/mTOR pathway signaling, its role in multiple cellular processes, and potential inhibition in human cancers. PubMedCrossRef • Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010;28:1075–83. An in-depth review describing PI3K/Akt/mTOR pathway signaling, its role in multiple cellular processes, and potential inhibition in human cancers. PubMedCrossRef
55.
go back to reference Conley AP, Araujo D, Ludwig J, et al. A randomized phase II study of perifosine (P) plus imatinib for patients with imatinib-resistant gastrointestinal stromal tumor (GIST). J Clin Oncol. 2009;27:10563. abstract. Conley AP, Araujo D, Ludwig J, et al. A randomized phase II study of perifosine (P) plus imatinib for patients with imatinib-resistant gastrointestinal stromal tumor (GIST). J Clin Oncol. 2009;27:10563. abstract.
56.
go back to reference Kondapaka SB, Singh SS, Dasmahapatra GP, et al. Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther. 2003;2:1093–103.PubMed Kondapaka SB, Singh SS, Dasmahapatra GP, et al. Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther. 2003;2:1093–103.PubMed
57.
go back to reference Pantaleo MA, Nicoletti G, Nanni C, et al. Preclinical evaluation of KIT/PDGFRA and mTOR inhibitors in gastrointestinal stromal tumors using small animal FDG PET. J Exp Clin Cancer Res. 2010;29:173.PubMedCrossRef Pantaleo MA, Nicoletti G, Nanni C, et al. Preclinical evaluation of KIT/PDGFRA and mTOR inhibitors in gastrointestinal stromal tumors using small animal FDG PET. J Exp Clin Cancer Res. 2010;29:173.PubMedCrossRef
58.
go back to reference Hohenberger P, Bauer S, Gruenwald V, et al. Multicenter, single-arm, two-stage phase II trial of everolimus (RAD001) with imatinib in imatinib-resistant patients (pts) with advanced GIST. J Clin Oncol. 2010;28:10048. abstract. Hohenberger P, Bauer S, Gruenwald V, et al. Multicenter, single-arm, two-stage phase II trial of everolimus (RAD001) with imatinib in imatinib-resistant patients (pts) with advanced GIST. J Clin Oncol. 2010;28:10048. abstract.
59.
go back to reference Richter S, Pink D, Hohenberger P, et al. Multicenter, triple-arm, single-stage, phase II trial to determine the efficacy and safety of everolimus (RAD001) in patients with refractory bone or soft tissue sarcomas including GIST. J Clin Oncol. 2010;28:10038. abstract. Richter S, Pink D, Hohenberger P, et al. Multicenter, triple-arm, single-stage, phase II trial to determine the efficacy and safety of everolimus (RAD001) in patients with refractory bone or soft tissue sarcomas including GIST. J Clin Oncol. 2010;28:10038. abstract.
60.
go back to reference Wander SA, Hennessy BT, Slingerland JM. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest. 2011;121:1231–41.PubMedCrossRef Wander SA, Hennessy BT, Slingerland JM. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest. 2011;121:1231–41.PubMedCrossRef
61.
go back to reference Li F, Growney J, Battalagine L, et al. The effect combining the KIT inhibitor imatinib with the PI3K inhibitor BKM120 or the dual PI3K/mTOR inhibitor BEZ235 on the proliferation of gastrointestinal stromal tumor cell lines [abstract 2239]. Presented at the 102nd Annual Meeting of the AACR. Chicago, Illinois, USA; March 31–April 4, 2012. Li F, Growney J, Battalagine L, et al. The effect combining the KIT inhibitor imatinib with the PI3K inhibitor BKM120 or the dual PI3K/mTOR inhibitor BEZ235 on the proliferation of gastrointestinal stromal tumor cell lines [abstract 2239]. Presented at the 102nd Annual Meeting of the AACR. Chicago, Illinois, USA; March 31–April 4, 2012.
62.
go back to reference Floris G, Sciot R, Wozniak A, et al. Activity of GDC-0941, an inhibitor of phosphotidylinositol 3 kinase (PI3K), in gastrointestinal stromal tumor (GIST) xenograft and duration of response after discontinuation of treatment in combination with imatinib. J Clin Oncol. 2010;25:10020. abstract. Floris G, Sciot R, Wozniak A, et al. Activity of GDC-0941, an inhibitor of phosphotidylinositol 3 kinase (PI3K), in gastrointestinal stromal tumor (GIST) xenograft and duration of response after discontinuation of treatment in combination with imatinib. J Clin Oncol. 2010;25:10020. abstract.
63.
go back to reference Van Looy T, Wozniak A, Sciot R, et al. Efficacy of a phosphoinositol 3 kinase (PI3K) inhibitor in gastrointestinal stromal tumor (GIST) models. J Clin Oncol. 2012;30:10030. abstract. Van Looy T, Wozniak A, Sciot R, et al. Efficacy of a phosphoinositol 3 kinase (PI3K) inhibitor in gastrointestinal stromal tumor (GIST) models. J Clin Oncol. 2012;30:10030. abstract.
64.
go back to reference Chiorean EG, Mahadevan D, Harris WB, et al. Phase I evaluation of SF1126, a vascular targeted PI3K inhibitor, administered twice weekly IV in patients with refractory solid tumors. J Clin Oncol. 2009;27:2558. abstract. Chiorean EG, Mahadevan D, Harris WB, et al. Phase I evaluation of SF1126, a vascular targeted PI3K inhibitor, administered twice weekly IV in patients with refractory solid tumors. J Clin Oncol. 2009;27:2558. abstract.
65.
go back to reference Wagner AJ, Bendell JC, Dolly S, et al. A first-in-human phase I study to evaluate GDC-0980, an oral PI3K/mTOR inhibitor, administered QD in patients with advanced solid tumors. J Clin Oncol. 2011;29:3020. abstract. Wagner AJ, Bendell JC, Dolly S, et al. A first-in-human phase I study to evaluate GDC-0980, an oral PI3K/mTOR inhibitor, administered QD in patients with advanced solid tumors. J Clin Oncol. 2011;29:3020. abstract.
66.
go back to reference Liegl B, Kepten I, Le C, et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol. 2008;216:64–74.PubMedCrossRef Liegl B, Kepten I, Le C, et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol. 2008;216:64–74.PubMedCrossRef
67.
go back to reference Gajiwala KS, Wu JC, Christensen J, et al. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc Natl Acad Sci USA. 2009;106:1542–7.PubMedCrossRef Gajiwala KS, Wu JC, Christensen J, et al. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc Natl Acad Sci USA. 2009;106:1542–7.PubMedCrossRef
68.
go back to reference Juric D, Baselga J. Tumor genetic testing for patient selection in phase I clinical trials: the case of PI3K inhibitors. J Clin Oncol. 2012;30:765–6.PubMedCrossRef Juric D, Baselga J. Tumor genetic testing for patient selection in phase I clinical trials: the case of PI3K inhibitors. J Clin Oncol. 2012;30:765–6.PubMedCrossRef
Metadata
Title
Exploring Novel Therapeutic Targets in GIST: Focus on the PI3K/Akt/mTOR Pathway
Author
Shreyaskumar Patel
Publication date
01-08-2013
Publisher
Springer US
Published in
Current Oncology Reports / Issue 4/2013
Print ISSN: 1523-3790
Electronic ISSN: 1534-6269
DOI
https://doi.org/10.1007/s11912-013-0316-6

Other articles of this Issue 4/2013

Current Oncology Reports 4/2013 Go to the issue

Lung Cancer (T Mekhail, Section Editor)

New Targets in Non-Small Cell Lung Cancer

Lung Cancer (T Mekhail, Section Editor)

The Role of Radiation Therapy in Small Cell Lung Cancer

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine