Skip to main content
Top
Published in: Current Neurology and Neuroscience Reports 8/2016

01-08-2016 | Dementia (KS Marder, Section Editor)

Cognitive and Functional Consequence of Cardiac Arrest

Authors: Claudia A. Perez, Niyatee Samudra, Venkatesh Aiyagari

Published in: Current Neurology and Neuroscience Reports | Issue 8/2016

Login to get access

Abstract

Cardiac arrest is associated with high morbidity and mortality. Better-quality bystander cardiopulmonary resuscitation training, cardiocerebral resuscitation principles, and intensive post-resuscitation hospital care have improved survival. However, cognitive and functional impairment after cardiac arrest remain areas of concern. Research focus has shifted beyond prognostication in the immediate post-arrest period to identification of mechanisms for long-term brain injury and implementation of promising protocols to reduce neuronal injury. These include therapeutic temperature management (TTM), as well as pharmacologic and psychological interventions which also improve overall neurological function. Comprehensive assessment of cognitive function post-arrest is hampered by heterogeneous measures among studies. However, the domains of attention, long-term memory, spatial memory, and executive function appear to be affected. As more patients survive cardiac arrest for longer periods of time, there needs to be a greater focus on interventions that can enhance cognitive and psychosocial function post-arrest.
Literature
1.
go back to reference Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: heart disease and stroke statistics-2016 update: a report from the American heart association. Circulation. 2016;133:447–54.CrossRefPubMed Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: heart disease and stroke statistics-2016 update: a report from the American heart association. Circulation. 2016;133:447–54.CrossRefPubMed
2.
go back to reference Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation. 2010;81:1479–87.CrossRefPubMed Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation. 2010;81:1479–87.CrossRefPubMed
3.
go back to reference Frohlich GM, Lyon RM, Sasson C, Crake T, Whitbread M, Indermuehle A, et al. Out-of-hospital cardiac arrest—optimal management. Curr Cardiol Rev. 2013;9:316–24.CrossRefPubMedPubMedCentral Frohlich GM, Lyon RM, Sasson C, Crake T, Whitbread M, Indermuehle A, et al. Out-of-hospital cardiac arrest—optimal management. Curr Cardiol Rev. 2013;9:316–24.CrossRefPubMedPubMedCentral
4.
go back to reference Kellum MJ, Kennedy KW, Ewy GA. Cardiocerebral resuscitation improves survival of patients with out-of-hospital cardiac arrest. Am J Med. 2006;119:335–40.CrossRefPubMed Kellum MJ, Kennedy KW, Ewy GA. Cardiocerebral resuscitation improves survival of patients with out-of-hospital cardiac arrest. Am J Med. 2006;119:335–40.CrossRefPubMed
5.
go back to reference Blom MT, Beesems SG, Homma PC, Zijlstra JA, Hulleman M, van Hoeijen DA, et al. Improved survival after out-of-hospital cardiac arrest and use of automated external defibrillators. Circulation. 2014;130:1868–75.CrossRefPubMed Blom MT, Beesems SG, Homma PC, Zijlstra JA, Hulleman M, van Hoeijen DA, et al. Improved survival after out-of-hospital cardiac arrest and use of automated external defibrillators. Circulation. 2014;130:1868–75.CrossRefPubMed
6.••
go back to reference Zhang XW, Xie JF, Chen JX, Huang YZ, Guo FM, Yang Y, et al. The effect of mild induced hypothermia on outcomes of patients after cardiac arrest: a systematic review and meta-analysis of randomised controlled trials. Crit Care. 2015;19:417. This is a meta-analysis of six RCT, which showed that mild induced hypothermia (MIH) may not improve mortality after cardiac arrest at hospital discharge, except for those who have a shockable rhythm. MIH improved neurological function at hospital discharge.CrossRefPubMedPubMedCentral Zhang XW, Xie JF, Chen JX, Huang YZ, Guo FM, Yang Y, et al. The effect of mild induced hypothermia on outcomes of patients after cardiac arrest: a systematic review and meta-analysis of randomised controlled trials. Crit Care. 2015;19:417. This is a meta-analysis of six RCT, which showed that mild induced hypothermia (MIH) may not improve mortality after cardiac arrest at hospital discharge, except for those who have a shockable rhythm. MIH improved neurological function at hospital discharge.CrossRefPubMedPubMedCentral
7.
go back to reference Gao Y, Hui KL, Wang YJ, Wu L, Duan ML, Xu JG, et al. Efficacy of mild hypothermia for the treatment of patients with cardiac arrest. Chin Med J (Engl). 2015;128:1536–42.CrossRef Gao Y, Hui KL, Wang YJ, Wu L, Duan ML, Xu JG, et al. Efficacy of mild hypothermia for the treatment of patients with cardiac arrest. Chin Med J (Engl). 2015;128:1536–42.CrossRef
8.
go back to reference Maupain C, Bougouin W, Lamhaut L, Deye N, Diehl JL, Geri G, Perier MC, Beganton F, Marijon E, Jouven X, Cariou A, Dumas F. The CAHP (Cardiac Arrest Hospital Prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest. Eur Heart J. 2015. Maupain C, Bougouin W, Lamhaut L, Deye N, Diehl JL, Geri G, Perier MC, Beganton F, Marijon E, Jouven X, Cariou A, Dumas F. The CAHP (Cardiac Arrest Hospital Prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest. Eur Heart J. 2015.
9.
go back to reference Okada K, Ohde S, Otani N, Sera T, Mochizuki T, Aoki M, et al. Prediction protocol for neurological outcome for survivors of out-of-hospital cardiac arrest treated with targeted temperature management. Resuscitation. 2012;83:734–9.CrossRefPubMed Okada K, Ohde S, Otani N, Sera T, Mochizuki T, Aoki M, et al. Prediction protocol for neurological outcome for survivors of out-of-hospital cardiac arrest treated with targeted temperature management. Resuscitation. 2012;83:734–9.CrossRefPubMed
10.
go back to reference Adrie C, Cariou A, Mourvillier B, Laurent I, Dabbane H, Hantala F, et al. Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: the OHCA score. Eur Heart J. 2006;27:2840–5.CrossRefPubMed Adrie C, Cariou A, Mourvillier B, Laurent I, Dabbane H, Hantala F, et al. Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: the OHCA score. Eur Heart J. 2006;27:2840–5.CrossRefPubMed
11.
go back to reference Phelps R, Dumas F, Maynard C, Silver J, Rea T. Cerebral performance category and long-term prognosis following out-of-hospital cardiac arrest. Crit Care Med. 2013;41:1252–7.CrossRefPubMed Phelps R, Dumas F, Maynard C, Silver J, Rea T. Cerebral performance category and long-term prognosis following out-of-hospital cardiac arrest. Crit Care Med. 2013;41:1252–7.CrossRefPubMed
12.
go back to reference Wachelder EM, Moulaert VR, van Heugten C, Verbunt JA, Bekkers SC, Wade DT. Life after survival: long-term daily functioning and quality of life after an out-of-hospital cardiac arrest. Resuscitation. 2009;80:517–22.CrossRefPubMed Wachelder EM, Moulaert VR, van Heugten C, Verbunt JA, Bekkers SC, Wade DT. Life after survival: long-term daily functioning and quality of life after an out-of-hospital cardiac arrest. Resuscitation. 2009;80:517–22.CrossRefPubMed
13.
go back to reference Cronberg T, Lilja G, Rundgren M, Friberg H, Widner H. Long-term neurological outcome after cardiac arrest and therapeutic hypothermia. Resuscitation. 2009;80:1119–23.CrossRefPubMed Cronberg T, Lilja G, Rundgren M, Friberg H, Widner H. Long-term neurological outcome after cardiac arrest and therapeutic hypothermia. Resuscitation. 2009;80:1119–23.CrossRefPubMed
14.
go back to reference Buanes EA, Gramstad A, Sovig KK, Hufthammer KO, Flaatten H, Husby T, et al. Cognitive function and health-related quality of life four years after cardiac arrest. Resuscitation. 2015;89:13–8.CrossRefPubMed Buanes EA, Gramstad A, Sovig KK, Hufthammer KO, Flaatten H, Husby T, et al. Cognitive function and health-related quality of life four years after cardiac arrest. Resuscitation. 2015;89:13–8.CrossRefPubMed
15.
go back to reference Sulzgruber P, Kliegel A, Wandaller C, Uray T, Losert H, Laggner AN, et al. Survivors of cardiac arrest with good neurological outcome show considerable impairments of memory functioning. Resuscitation. 2015;88:120–5.CrossRefPubMed Sulzgruber P, Kliegel A, Wandaller C, Uray T, Losert H, Laggner AN, et al. Survivors of cardiac arrest with good neurological outcome show considerable impairments of memory functioning. Resuscitation. 2015;88:120–5.CrossRefPubMed
16.
go back to reference Madl C, Holzer M. Brain function after resuscitation from cardiac arrest. Curr Opin Crit Care. 2004;10:213–7.CrossRefPubMed Madl C, Holzer M. Brain function after resuscitation from cardiac arrest. Curr Opin Crit Care. 2004;10:213–7.CrossRefPubMed
17.
go back to reference Greer DM. Mechanisms of injury in hypoxic-ischemic encephalopathy: implications to therapy. Semin Neurol. 2006;26:373–9.CrossRefPubMed Greer DM. Mechanisms of injury in hypoxic-ischemic encephalopathy: implications to therapy. Semin Neurol. 2006;26:373–9.CrossRefPubMed
18.
go back to reference Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol. 2002;282:C227–41.CrossRefPubMed Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol. 2002;282:C227–41.CrossRefPubMed
19.
go back to reference Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci. 2007;27:1129–38.CrossRefPubMed Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci. 2007;27:1129–38.CrossRefPubMed
20.
go back to reference Kaur C, Rathnasamy G, Ling EA. Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina. J Neuroimmune Pharmacol. 2013;8:66–78.CrossRefPubMed Kaur C, Rathnasamy G, Ling EA. Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina. J Neuroimmune Pharmacol. 2013;8:66–78.CrossRefPubMed
21.
go back to reference Aarts MM, Tymianski M. Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. Curr Mol Med. 2004;4:137–47.CrossRefPubMed Aarts MM, Tymianski M. Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. Curr Mol Med. 2004;4:137–47.CrossRefPubMed
22.
go back to reference Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium. 2003;34:325–37.CrossRefPubMed Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium. 2003;34:325–37.CrossRefPubMed
24.
go back to reference Chen GJ, Xu J, Lahousse SA, Caggiano NL, de la Monte SM. Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: potential strategies for neuroprotection. J Alzheimers Dis. 2003;5:209–28.PubMed Chen GJ, Xu J, Lahousse SA, Caggiano NL, de la Monte SM. Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: potential strategies for neuroprotection. J Alzheimers Dis. 2003;5:209–28.PubMed
25.
go back to reference Villarreal AE, Barron R, Rao KS, Britton GB. The effects of impaired cerebral circulation on Alzheimer’s disease pathology: evidence from animal studies. J Alzheimers Dis. 2014;42:707–22.PubMed Villarreal AE, Barron R, Rao KS, Britton GB. The effects of impaired cerebral circulation on Alzheimer’s disease pathology: evidence from animal studies. J Alzheimers Dis. 2014;42:707–22.PubMed
26.••
go back to reference Pluta R, Kocki J, Ulamek-Koziol M, Bogucka-Kocka A, Gil-Kulik P, Januszewski S, et al. Alzheimer-associated presenilin 2 gene is dysregulated in rat medial temporal lobe cortex after complete brain ischemia due to cardiac arrest. Pharmacol Rep. 2016;68:155–61. Animal model study which showed dysregulation of presenilin 2 gene expression in global brain ischemia from cardiac arrest. Ischemia induced gene dysregulation may play a role in late onset Alzheimer’s-type dementia.CrossRefPubMed Pluta R, Kocki J, Ulamek-Koziol M, Bogucka-Kocka A, Gil-Kulik P, Januszewski S, et al. Alzheimer-associated presenilin 2 gene is dysregulated in rat medial temporal lobe cortex after complete brain ischemia due to cardiac arrest. Pharmacol Rep. 2016;68:155–61. Animal model study which showed dysregulation of presenilin 2 gene expression in global brain ischemia from cardiac arrest. Ischemia induced gene dysregulation may play a role in late onset Alzheimer’s-type dementia.CrossRefPubMed
27.
go back to reference Maslinska D, Laure-Kamionowska M, Taraszewska A, Deregowski K, Maslinski S. Immunodistribution of amyloid beta protein (Abeta) and advanced glycation end-product receptors (RAGE) in choroid plexus and ependyma of resuscitated patients. Folia Neuropathol. 2011;49:295–300.PubMed Maslinska D, Laure-Kamionowska M, Taraszewska A, Deregowski K, Maslinski S. Immunodistribution of amyloid beta protein (Abeta) and advanced glycation end-product receptors (RAGE) in choroid plexus and ependyma of resuscitated patients. Folia Neuropathol. 2011;49:295–300.PubMed
28.
go back to reference Muche A, Burger S, Arendt T, Schliebs R. Hypoxic stress, brain vascular system, and beta-amyloid: a primary cell culture study. Nutr Neurosci. 2015;18:1–11.CrossRefPubMed Muche A, Burger S, Arendt T, Schliebs R. Hypoxic stress, brain vascular system, and beta-amyloid: a primary cell culture study. Nutr Neurosci. 2015;18:1–11.CrossRefPubMed
29.
go back to reference Bjorklund E, Lindberg E, Rundgren M, Cronberg T, Friberg H, Englund E. Ischaemic brain damage after cardiac arrest and induced hypothermia—a systematic description of selective eosinophilic neuronal death. A neuropathologic study of 23 patients. Resuscitation. 2014;85:527–32.CrossRefPubMed Bjorklund E, Lindberg E, Rundgren M, Cronberg T, Friberg H, Englund E. Ischaemic brain damage after cardiac arrest and induced hypothermia—a systematic description of selective eosinophilic neuronal death. A neuropathologic study of 23 patients. Resuscitation. 2014;85:527–32.CrossRefPubMed
30.
go back to reference Zola-Morgan S, Squire LR, Amaral DG. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986;6:2950–67.PubMed Zola-Morgan S, Squire LR, Amaral DG. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986;6:2950–67.PubMed
31.
go back to reference Petito CK, Feldmann E, Pulsinelli WA, Plum F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology. 1987;37:1281–6.CrossRefPubMed Petito CK, Feldmann E, Pulsinelli WA, Plum F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology. 1987;37:1281–6.CrossRefPubMed
32.
go back to reference Brierley JB, Graham DI, Adams JH, Simpsom JA. Neocortical death after cardiac arrest. A clinical, neurophysiological, and neuropathological report of two cases. Lancet. 1971;2:560–5.PubMed Brierley JB, Graham DI, Adams JH, Simpsom JA. Neocortical death after cardiac arrest. A clinical, neurophysiological, and neuropathological report of two cases. Lancet. 1971;2:560–5.PubMed
33.
go back to reference Whitwell JL, Petersen RC, Negash S, Weigand SD, Kantarci K, Ivnik RJ, et al. Patterns of atrophy differ among specific subtypes of mild cognitive impairment. Arch Neurol. 2007;64:1130–8.CrossRefPubMedPubMedCentral Whitwell JL, Petersen RC, Negash S, Weigand SD, Kantarci K, Ivnik RJ, et al. Patterns of atrophy differ among specific subtypes of mild cognitive impairment. Arch Neurol. 2007;64:1130–8.CrossRefPubMedPubMedCentral
34.
go back to reference Duara R, Loewenstein DA, Potter E, Appel J, Greig MT, Urs R, et al. Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology. 2008;71:1986–92.CrossRefPubMedPubMedCentral Duara R, Loewenstein DA, Potter E, Appel J, Greig MT, Urs R, et al. Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology. 2008;71:1986–92.CrossRefPubMedPubMedCentral
35.
go back to reference Grubb NR, Fox KA, Smith K, Best J, Blane A, Ebmeier KP, et al. Memory impairment in out-of-hospital cardiac arrest survivors is associated with global reduction in brain volume, not focal hippocampal injury. Stroke. 2000;31:1509–14.CrossRefPubMed Grubb NR, Fox KA, Smith K, Best J, Blane A, Ebmeier KP, et al. Memory impairment in out-of-hospital cardiac arrest survivors is associated with global reduction in brain volume, not focal hippocampal injury. Stroke. 2000;31:1509–14.CrossRefPubMed
36.
go back to reference Nunes B, Pais J, Garcia R, Magalhaes Z, Granja C, Silva MC. Cardiac arrest: long-term cognitive and imaging analysis. Resuscitation. 2003;57:287–97.CrossRefPubMed Nunes B, Pais J, Garcia R, Magalhaes Z, Granja C, Silva MC. Cardiac arrest: long-term cognitive and imaging analysis. Resuscitation. 2003;57:287–97.CrossRefPubMed
37.
go back to reference Markowitsch HJ, Weber-Luxemburger G, Ewald K, Kessler J, Heiss WD. Patients with heart attacks are not valid models for medial temporal lobe amnesia. A neuropsychological and FDG-PET study with consequences for memory research. Eur J Neurol. 1997;4:178–84.CrossRefPubMed Markowitsch HJ, Weber-Luxemburger G, Ewald K, Kessler J, Heiss WD. Patients with heart attacks are not valid models for medial temporal lobe amnesia. A neuropsychological and FDG-PET study with consequences for memory research. Eur J Neurol. 1997;4:178–84.CrossRefPubMed
38.
go back to reference Roine RO, Raininko R, Erkinjuntti T, Ylikoski A, Kaste M. Magnetic resonance imaging findings associated with cardiac arrest. Stroke. 1993;24:1005–14.CrossRefPubMed Roine RO, Raininko R, Erkinjuntti T, Ylikoski A, Kaste M. Magnetic resonance imaging findings associated with cardiac arrest. Stroke. 1993;24:1005–14.CrossRefPubMed
39.
go back to reference Levy DE, Caronna JJ, Singer BH, Lapinski RH, Frydman H, Plum F. Predicting outcome from hypoxic-ischemic coma. JAMA. 1985;253:1420–6.CrossRefPubMed Levy DE, Caronna JJ, Singer BH, Lapinski RH, Frydman H, Plum F. Predicting outcome from hypoxic-ischemic coma. JAMA. 1985;253:1420–6.CrossRefPubMed
40.
go back to reference Moulaert Vé RM, van Haastregt JCM, Wade DT, van Heugten CM, Verbunt JA. ‘Stand still …, move on’, an early neurologically-focused follow-up for cardiac arrest survivors and their caregivers: a process evaluation. BMC Health Serv Res. 2014;14:34.CrossRef Moulaert Vé RM, van Haastregt JCM, Wade DT, van Heugten CM, Verbunt JA. ‘Stand still …, move on’, an early neurologically-focused follow-up for cardiac arrest survivors and their caregivers: a process evaluation. BMC Health Serv Res. 2014;14:34.CrossRef
41.
go back to reference Moulaert VR, Verbunt JA, van Heugten CM, Wade DT. Cognitive impairments in survivors of out-of-hospital cardiac arrest: a systematic review. Resuscitation. 2009;80:297–305.CrossRefPubMed Moulaert VR, Verbunt JA, van Heugten CM, Wade DT. Cognitive impairments in survivors of out-of-hospital cardiac arrest: a systematic review. Resuscitation. 2009;80:297–305.CrossRefPubMed
42.
go back to reference van Alem AP, de Vos R, Schmand B, Koster RW. Cognitive impairment in survivors of out-of-hospital cardiac arrest. Am Heart J. 2004;148:416–21.CrossRefPubMed van Alem AP, de Vos R, Schmand B, Koster RW. Cognitive impairment in survivors of out-of-hospital cardiac arrest. Am Heart J. 2004;148:416–21.CrossRefPubMed
43.
go back to reference Rankin J. Cerebral vascular accidents in patients over the age of 60. II. Prognosis. Scott Med J. 1957;2:200–15.PubMed Rankin J. Cerebral vascular accidents in patients over the age of 60. II. Prognosis. Scott Med J. 1957;2:200–15.PubMed
44.
go back to reference Ajam K, Gold LS, Beck SS, Damon S, Phelps R, Rea TD. Reliability of the cerebral performance category to classify neurological status among survivors of ventricular fibrillation arrest: a cohort study. Scand J Trauma Resusc Emerg Med. 2011;19:38.CrossRefPubMedPubMedCentral Ajam K, Gold LS, Beck SS, Damon S, Phelps R, Rea TD. Reliability of the cerebral performance category to classify neurological status among survivors of ventricular fibrillation arrest: a cohort study. Scand J Trauma Resusc Emerg Med. 2011;19:38.CrossRefPubMedPubMedCentral
45.
go back to reference Rittenberger JC, Raina K, Holm MB, Kim YJ, Callaway CW. Association between cerebral performance category, modified Rankin scale, and discharge disposition after cardiac arrest. Resuscitation. 2011;82:1036–40.CrossRefPubMedPubMedCentral Rittenberger JC, Raina K, Holm MB, Kim YJ, Callaway CW. Association between cerebral performance category, modified Rankin scale, and discharge disposition after cardiac arrest. Resuscitation. 2011;82:1036–40.CrossRefPubMedPubMedCentral
46.
go back to reference Stiell IG, Nesbitt LP, Nichol G, Maloney J, Dreyer J, Beaudoin T, et al. Comparison of the cerebral performance category score and the health utilities index for survivors of cardiac arrest. Ann Emerg Med. 2009;53:241–8.CrossRefPubMed Stiell IG, Nesbitt LP, Nichol G, Maloney J, Dreyer J, Beaudoin T, et al. Comparison of the cerebral performance category score and the health utilities index for survivors of cardiac arrest. Ann Emerg Med. 2009;53:241–8.CrossRefPubMed
47.
go back to reference Lim C, Alexander MP, LaFleche G, Schnyer DM, Verfaellie M. The neurological and cognitive sequelae of cardiac arrest. Neurology. 2004;63:1774–8.CrossRefPubMed Lim C, Alexander MP, LaFleche G, Schnyer DM, Verfaellie M. The neurological and cognitive sequelae of cardiac arrest. Neurology. 2004;63:1774–8.CrossRefPubMed
48.
49.
go back to reference Drysdale EE, Grubb NR, Fox KA, O’Carroll RE. Chronicity of memory impairment in long-term out-of-hospital cardiac arrest survivors. Resuscitation. 2000;47:27–32.CrossRefPubMed Drysdale EE, Grubb NR, Fox KA, O’Carroll RE. Chronicity of memory impairment in long-term out-of-hospital cardiac arrest survivors. Resuscitation. 2000;47:27–32.CrossRefPubMed
50.
go back to reference Greene JD, Baddeley AD, Hodges JR. Analysis of the episodic memory deficit in early Alzheimer’s disease: evidence from the doors and people test. Neuropsychologia. 1996;34:537–51.CrossRefPubMed Greene JD, Baddeley AD, Hodges JR. Analysis of the episodic memory deficit in early Alzheimer’s disease: evidence from the doors and people test. Neuropsychologia. 1996;34:537–51.CrossRefPubMed
51.
go back to reference Mateen FJ, Josephs KA, Trenerry MR, Felmlee-Devine MD, Weaver AL, Carone M, et al. Long-term cognitive outcomes following out-of-hospital cardiac arrest: a population-based study. Neurology. 2011;77:1438–45.CrossRefPubMed Mateen FJ, Josephs KA, Trenerry MR, Felmlee-Devine MD, Weaver AL, Carone M, et al. Long-term cognitive outcomes following out-of-hospital cardiac arrest: a population-based study. Neurology. 2011;77:1438–45.CrossRefPubMed
52.
go back to reference Roine RO, Kajaste S, Kaste M. Neuropsychological sequelae of cardiac arrest. JAMA. 1993;269:237–42.CrossRefPubMed Roine RO, Kajaste S, Kaste M. Neuropsychological sequelae of cardiac arrest. JAMA. 1993;269:237–42.CrossRefPubMed
53.
go back to reference Sauve MJ, Walker JA, Massa SM, Winkle RA, Scheinman MM. Patterns of cognitive recovery in sudden cardiac arrest survivors: the pilot study. Heart Lung. 1996;25:172–81.CrossRefPubMed Sauve MJ, Walker JA, Massa SM, Winkle RA, Scheinman MM. Patterns of cognitive recovery in sudden cardiac arrest survivors: the pilot study. Heart Lung. 1996;25:172–81.CrossRefPubMed
54.
go back to reference Orbo M, Aslaksen PM, Larsby K, Schafer C, Tande PM, Vangberg TR, et al. Relevance of cognition to health-related quality of life in good-outcome survivors of out-of-hospital cardiac arrest. J Rehabil Med. 2015;47:860–6.CrossRefPubMed Orbo M, Aslaksen PM, Larsby K, Schafer C, Tande PM, Vangberg TR, et al. Relevance of cognition to health-related quality of life in good-outcome survivors of out-of-hospital cardiac arrest. J Rehabil Med. 2015;47:860–6.CrossRefPubMed
55.
go back to reference Lilja G, Nilsson G, Nielsen N, Friberg H, Hassager C, Koopmans M, et al. Anxiety and depression among out-of-hospital cardiac arrest survivors. Resuscitation. 2015;97:68–75.CrossRefPubMed Lilja G, Nilsson G, Nielsen N, Friberg H, Hassager C, Koopmans M, et al. Anxiety and depression among out-of-hospital cardiac arrest survivors. Resuscitation. 2015;97:68–75.CrossRefPubMed
56.••
go back to reference Pachys G, Kaufman N, Bdolah-Abram T, Kark JD, Einav S. Predictors of long-term survival after out-of-hospital cardiac arrest: the impact of activities of daily living and cerebral performance category scores. Resuscitation. 2014;85:1052–8. This study presented prospective data in assessing outcomes for n = 1043 Israeli out-of-hospital cardiac arrest patients. 18.6% of these patients survived. Of these, 1/3 died within 30 months of the arrest. Of those who survived, long-term survival was positively correlated with lower CPC scores and less worsening in activities of daily living from before the arrest to hospital discharge. Most frequently, long-term survival in this cohort was associated with less deterioration in functional status and activities of daily living.CrossRefPubMed Pachys G, Kaufman N, Bdolah-Abram T, Kark JD, Einav S. Predictors of long-term survival after out-of-hospital cardiac arrest: the impact of activities of daily living and cerebral performance category scores. Resuscitation. 2014;85:1052–8. This study presented prospective data in assessing outcomes for n = 1043 Israeli out-of-hospital cardiac arrest patients. 18.6% of these patients survived. Of these, 1/3 died within 30 months of the arrest. Of those who survived, long-term survival was positively correlated with lower CPC scores and less worsening in activities of daily living from before the arrest to hospital discharge. Most frequently, long-term survival in this cohort was associated with less deterioration in functional status and activities of daily living.CrossRefPubMed
57.
go back to reference Hsu JW, Madsen CD, Callaham ML. Quality-of-life and formal functional testing of survivors of out-of-hospital cardiac arrest correlates poorly with traditional neurologic outcome scales. Ann Emerg Med. 1996;28:597–605.CrossRefPubMed Hsu JW, Madsen CD, Callaham ML. Quality-of-life and formal functional testing of survivors of out-of-hospital cardiac arrest correlates poorly with traditional neurologic outcome scales. Ann Emerg Med. 1996;28:597–605.CrossRefPubMed
58.
go back to reference Elliott VJ, Rodgers DL, Brett SJ. Systematic review of quality of life and other patient-centred outcomes after cardiac arrest survival. Resuscitation. 2011;82:247–56.CrossRefPubMed Elliott VJ, Rodgers DL, Brett SJ. Systematic review of quality of life and other patient-centred outcomes after cardiac arrest survival. Resuscitation. 2011;82:247–56.CrossRefPubMed
59.••
go back to reference Smith K, Andrew E, Lijovic M, Nehme Z, Bernard S. Quality of life and functional outcomes 12 months after out-of-hospital cardiac arrest. Circulation. 2015;131:174–81. A large study (n = 697) which looked at functional outcomes in cardiac arrest survivors after one year. Provides good evidence that that many survivors have a good quality of life 12 months post-arrest when compared to population.CrossRefPubMed Smith K, Andrew E, Lijovic M, Nehme Z, Bernard S. Quality of life and functional outcomes 12 months after out-of-hospital cardiac arrest. Circulation. 2015;131:174–81. A large study (n = 697) which looked at functional outcomes in cardiac arrest survivors after one year. Provides good evidence that that many survivors have a good quality of life 12 months post-arrest when compared to population.CrossRefPubMed
60.
go back to reference Nichol G, Guffey D, Stiell IG, Leroux B, Cheskes S, Idris A, Kudenchuk PJ, Macphee RS, Wittwer L, Rittenberger JC, Rea TD, Sheehan K, Rac VE, Raina K, Gorman K, Aufderheide T. Post-discharge outcomes after resuscitation from out-of-hospital cardiac arrest: a ROC PRIMED substudy. Resuscitation 93:74–81. Nichol G, Guffey D, Stiell IG, Leroux B, Cheskes S, Idris A, Kudenchuk PJ, Macphee RS, Wittwer L, Rittenberger JC, Rea TD, Sheehan K, Rac VE, Raina K, Gorman K, Aufderheide T. Post-discharge outcomes after resuscitation from out-of-hospital cardiac arrest: a ROC PRIMED substudy. Resuscitation 93:74–81.
61.
go back to reference Kragholm K, Wissenberg M, Mortensen RN, Fonager K, Jensen SE, Rajan S, et al. Return to work in out-of-hospital cardiac arrest survivors: a nationwide register-based follow-up study. Circulation. 2015;131:1682–90.CrossRefPubMed Kragholm K, Wissenberg M, Mortensen RN, Fonager K, Jensen SE, Rajan S, et al. Return to work in out-of-hospital cardiac arrest survivors: a nationwide register-based follow-up study. Circulation. 2015;131:1682–90.CrossRefPubMed
62.
go back to reference Larsson IM, Wallin E, Rubertsson S, Kristofferzon ML. Health-related quality of life improves during the first six months after cardiac arrest and hypothermia treatment. Resuscitation. 2014;85:215–20.CrossRefPubMed Larsson IM, Wallin E, Rubertsson S, Kristofferzon ML. Health-related quality of life improves during the first six months after cardiac arrest and hypothermia treatment. Resuscitation. 2014;85:215–20.CrossRefPubMed
63.
go back to reference Stiell I, Nichol G, Wells G, De Maio V, Nesbitt L, Blackburn J, et al. Health-related quality of life is better for cardiac arrest survivors who received citizen cardiopulmonary resuscitation. Circulation. 2003;108:1939–44.CrossRefPubMed Stiell I, Nichol G, Wells G, De Maio V, Nesbitt L, Blackburn J, et al. Health-related quality of life is better for cardiac arrest survivors who received citizen cardiopulmonary resuscitation. Circulation. 2003;108:1939–44.CrossRefPubMed
64.
go back to reference van Alem AP, Waalewijn RA, Koster RW, de Vos R. Assessment of quality of life and cognitive function after out-of-hospital cardiac arrest with successful resuscitation. Am J Cardiol. 2004;93:131–5.CrossRefPubMed van Alem AP, Waalewijn RA, Koster RW, de Vos R. Assessment of quality of life and cognitive function after out-of-hospital cardiac arrest with successful resuscitation. Am J Cardiol. 2004;93:131–5.CrossRefPubMed
65.
go back to reference Pusswald G, Fertl E, Faltl M, Auff E. Neurological rehabilitation of severely disabled cardiac arrest survivors. Part II. Life situation of patients and families after treatment. Resuscitation. 2000;47:241–8.CrossRefPubMed Pusswald G, Fertl E, Faltl M, Auff E. Neurological rehabilitation of severely disabled cardiac arrest survivors. Part II. Life situation of patients and families after treatment. Resuscitation. 2000;47:241–8.CrossRefPubMed
66.
go back to reference Green CR, Botha JA, Tiruvoipati R. Cognitive function, quality of life and mental health in survivors of our-of-hospital cardiac arrest: a review. Anaesth Intensive Care. 2015;43:568–76.PubMed Green CR, Botha JA, Tiruvoipati R. Cognitive function, quality of life and mental health in survivors of our-of-hospital cardiac arrest: a review. Anaesth Intensive Care. 2015;43:568–76.PubMed
67.••
go back to reference Wilder Schaaf KP, Artman LK, Peberdy MA, Walker WC, Ornato JP, Gossip MR, et al. Anxiety, depression, and PTSD following cardiac arrest: a systematic review of the literature. Resuscitation. 2013;84:873–7. A systematic review which showed high rates of psychological distress after OHCA. Incidence rates of depression ranged from 14% to 45%; anxiety rates from 13% to 61%; PTSD rates from 19% to 27%. Highlights need for psychological screening and early intervention and further study of incidence in inpatient and outpatient setting.CrossRefPubMed Wilder Schaaf KP, Artman LK, Peberdy MA, Walker WC, Ornato JP, Gossip MR, et al. Anxiety, depression, and PTSD following cardiac arrest: a systematic review of the literature. Resuscitation. 2013;84:873–7. A systematic review which showed high rates of psychological distress after OHCA. Incidence rates of depression ranged from 14% to 45%; anxiety rates from 13% to 61%; PTSD rates from 19% to 27%. Highlights need for psychological screening and early intervention and further study of incidence in inpatient and outpatient setting.CrossRefPubMed
68.
go back to reference Deasy C, Bray J, Smith K, Harriss L, Bernard S, Cameron P. Functional outcomes and quality of life of young adults who survive out-of-hospital cardiac arrest. Emerg Med J. 2013;30:532–7.CrossRefPubMed Deasy C, Bray J, Smith K, Harriss L, Bernard S, Cameron P. Functional outcomes and quality of life of young adults who survive out-of-hospital cardiac arrest. Emerg Med J. 2013;30:532–7.CrossRefPubMed
69.
go back to reference Wilson M, Staniforth A, Till R, das Nair R, Vesey P. The psychosocial outcomes of anoxic brain injury following cardiac arrest. Resuscitation. 2014;85:795–800.CrossRefPubMed Wilson M, Staniforth A, Till R, das Nair R, Vesey P. The psychosocial outcomes of anoxic brain injury following cardiac arrest. Resuscitation. 2014;85:795–800.CrossRefPubMed
70.
go back to reference Parnia S, Spearpoint K, Fenwick PB. Near death experiences, cognitive function and psychological outcomes of surviving cardiac arrest. Resuscitation. 2007;74:215–21.CrossRefPubMed Parnia S, Spearpoint K, Fenwick PB. Near death experiences, cognitive function and psychological outcomes of surviving cardiac arrest. Resuscitation. 2007;74:215–21.CrossRefPubMed
71.
go back to reference Hypothermia after Cardiac Arrest Study G. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–56.CrossRef Hypothermia after Cardiac Arrest Study G. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–56.CrossRef
72.
go back to reference Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.CrossRefPubMed Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.CrossRefPubMed
73.
go back to reference Tiainen M, Poutiainen E, Kovala T, Takkunen O, Happola O, Roine RO. Cognitive and neurophysiological outcome of cardiac arrest survivors treated with therapeutic hypothermia. Stroke. 2007;38:2303–8.CrossRefPubMed Tiainen M, Poutiainen E, Kovala T, Takkunen O, Happola O, Roine RO. Cognitive and neurophysiological outcome of cardiac arrest survivors treated with therapeutic hypothermia. Stroke. 2007;38:2303–8.CrossRefPubMed
74.••
go back to reference Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369:2197–206. This is international trial, of randomly assigned unconscious survivors of out of hospital cardiac arrest(OHCA), n = 939, to either TTM of 33 degrees C or 36 degrees C. The study did not show benefit of hypothermia in mortality through the end of trial period or neurological function at 180 day-follow up.CrossRefPubMed Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369:2197–206. This is international trial, of randomly assigned unconscious survivors of out of hospital cardiac arrest(OHCA), n = 939, to either TTM of 33 degrees C or 36 degrees C. The study did not show benefit of hypothermia in mortality through the end of trial period or neurological function at 180 day-follow up.CrossRefPubMed
75.
go back to reference Alexander MP, Lafleche G, Schnyer D, Lim C, Verfaellie M. Cognitive and functional outcome after out of hospital cardiac arrest. J Int Neuropsychol Soc. 2011;17:364–8.CrossRefPubMedPubMedCentral Alexander MP, Lafleche G, Schnyer D, Lim C, Verfaellie M. Cognitive and functional outcome after out of hospital cardiac arrest. J Int Neuropsychol Soc. 2011;17:364–8.CrossRefPubMedPubMedCentral
76.
go back to reference Kida K, Shirozu K, Yu B, Mandeville JB, Bloch KD, Ichinose F. Beneficial effects of nitric oxide on outcomes after cardiac arrest and cardiopulmonary resuscitation in hypothermia-treated mice. Anesthesiology. 2014;120:880–9.CrossRefPubMedPubMedCentral Kida K, Shirozu K, Yu B, Mandeville JB, Bloch KD, Ichinose F. Beneficial effects of nitric oxide on outcomes after cardiac arrest and cardiopulmonary resuscitation in hypothermia-treated mice. Anesthesiology. 2014;120:880–9.CrossRefPubMedPubMedCentral
77.
go back to reference Minamishima S, Bougaki M, Sips PY, Yu JD, Minamishima YA, Elrod JW, et al. Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation. 2009;120:888–96.CrossRefPubMedPubMedCentral Minamishima S, Bougaki M, Sips PY, Yu JD, Minamishima YA, Elrod JW, et al. Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation. 2009;120:888–96.CrossRefPubMedPubMedCentral
78.••
go back to reference Laitio R, Hynninen M, Arola O, Virtanen S, Parkkola R, Saunavaara J, et al. Effect of inhaled xenon on cerebral white matter damage in comatose survivors of out-of-hospital cardiac arrest: a randomized clinical trial. JAMA. 2016;315:1120–8. This is a randomized controlled trial of 110 comatose patients assigned to receive either hypothermia alone or hypothermia with xenon. The primary outcome was cerebral white matter damage by fractional anisotropy from diffusion tensor MRI between 36 - 52 hours after cardiac arrest. Secondary endpoints were neurologic outcome (mRS) and mortality. Although xenon showed benefit over hypothermia alone in terms of less white matter damage, there was not a statistically significant difference in mRS or mortality at 6 months.CrossRefPubMed Laitio R, Hynninen M, Arola O, Virtanen S, Parkkola R, Saunavaara J, et al. Effect of inhaled xenon on cerebral white matter damage in comatose survivors of out-of-hospital cardiac arrest: a randomized clinical trial. JAMA. 2016;315:1120–8. This is a randomized controlled trial of 110 comatose patients assigned to receive either hypothermia alone or hypothermia with xenon. The primary outcome was cerebral white matter damage by fractional anisotropy from diffusion tensor MRI between 36 - 52 hours after cardiac arrest. Secondary endpoints were neurologic outcome (mRS) and mortality. Although xenon showed benefit over hypothermia alone in terms of less white matter damage, there was not a statistically significant difference in mRS or mortality at 6 months.CrossRefPubMed
79.
go back to reference Huang L, Applegate PM, Gatling JW, Mangus DB, Zhang J, Applegate 2nd RL. A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (part II-comprehensive protection). Med Gas Res. 2014;4:10.CrossRefPubMedPubMedCentral Huang L, Applegate PM, Gatling JW, Mangus DB, Zhang J, Applegate 2nd RL. A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (part II-comprehensive protection). Med Gas Res. 2014;4:10.CrossRefPubMedPubMedCentral
80.••
go back to reference Moulaert VR, van Heugten CM, Winkens B, Bakx WG, de Krom MC, Gorgels TP, et al. Early neurologically-focused follow-up after cardiac arrest improves quality of life at one year: a randomised controlled trial. Int J Cardiol. 2015;193:8–16. A nursing intervention was developed specifically for the purpose of improving neurologic and emotional health related outcomes for cardiac arrest survivors and caregivers (n = 185 and 155 respectively). Improvement in multiple SF-36 domains was assessed at different time points (2 weeks, 3 months, and 12 months). The group that received the intervention experienced improvement in overall emotional state and anxiety after a year. Additionally, at 3 months more people in the intervention group were back at work.CrossRefPubMed Moulaert VR, van Heugten CM, Winkens B, Bakx WG, de Krom MC, Gorgels TP, et al. Early neurologically-focused follow-up after cardiac arrest improves quality of life at one year: a randomised controlled trial. Int J Cardiol. 2015;193:8–16. A nursing intervention was developed specifically for the purpose of improving neurologic and emotional health related outcomes for cardiac arrest survivors and caregivers (n = 185 and 155 respectively). Improvement in multiple SF-36 domains was assessed at different time points (2 weeks, 3 months, and 12 months). The group that received the intervention experienced improvement in overall emotional state and anxiety after a year. Additionally, at 3 months more people in the intervention group were back at work.CrossRefPubMed
81.
go back to reference Huang Y, He Q, Yang LJ, Liu GJ, Jones A. Cardiopulmonary resuscitation (CPR) plus delayed defibrillation versus immediate defibrillation for out-of-hospital cardiac arrest. Cochrane Database Syst Rev. 2014;9:Cd009803.PubMed Huang Y, He Q, Yang LJ, Liu GJ, Jones A. Cardiopulmonary resuscitation (CPR) plus delayed defibrillation versus immediate defibrillation for out-of-hospital cardiac arrest. Cochrane Database Syst Rev. 2014;9:Cd009803.PubMed
82.
go back to reference Brooks SC, Hassan N, Bigham BL, Morrison LJ. Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev. 2014;2:Cd007260.PubMed Brooks SC, Hassan N, Bigham BL, Morrison LJ. Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev. 2014;2:Cd007260.PubMed
83.
go back to reference Aufderheide TP, Frascone RJ, Wayne MA, Mahoney BD, Swor RA, Domeier RM, et al. Standard cardiopulmonary resuscitation versus active compression-decompression cardiopulmonary resuscitation with augmentation of negative intrathoracic pressure for out-of-hospital cardiac arrest: a randomised trial. Lancet. 2011;377:301–11.CrossRefPubMedPubMedCentral Aufderheide TP, Frascone RJ, Wayne MA, Mahoney BD, Swor RA, Domeier RM, et al. Standard cardiopulmonary resuscitation versus active compression-decompression cardiopulmonary resuscitation with augmentation of negative intrathoracic pressure for out-of-hospital cardiac arrest: a randomised trial. Lancet. 2011;377:301–11.CrossRefPubMedPubMedCentral
84.
go back to reference Becker LB, Aufderheide TP, Geocadin RG, Callaway CW, Lazar RM, Donnino MW, et al. Primary outcomes for resuscitation science studies: a consensus statement from the American Heart Association. Circulation. 2011;124:2158–77.CrossRefPubMedPubMedCentral Becker LB, Aufderheide TP, Geocadin RG, Callaway CW, Lazar RM, Donnino MW, et al. Primary outcomes for resuscitation science studies: a consensus statement from the American Heart Association. Circulation. 2011;124:2158–77.CrossRefPubMedPubMedCentral
Metadata
Title
Cognitive and Functional Consequence of Cardiac Arrest
Authors
Claudia A. Perez
Niyatee Samudra
Venkatesh Aiyagari
Publication date
01-08-2016
Publisher
Springer US
Published in
Current Neurology and Neuroscience Reports / Issue 8/2016
Print ISSN: 1528-4042
Electronic ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-016-0669-y

Other articles of this Issue 8/2016

Current Neurology and Neuroscience Reports 8/2016 Go to the issue

Neurotrauma (M Kumar, Section Editor)

The Utility of Cerebral Blood Flow Assessment in TBI

Autonomic Dysfunction (LH Weimer, Section Editor)

Pure Autonomic Failure

Neuro-Ophthalmology (A Kawasaki, Section Editor)

Isolated Abducens Nerve Palsy: Update on Evaluation and Diagnosis

Behavior (H Kirshner, Section Editor)

Alien Hand Syndrome