Skip to main content
Top
Published in: Current Neurology and Neuroscience Reports 8/2015

01-08-2015 | Neuroimaging (DJ Brooks, Section Editor)

How Relevant Are Imaging Findings in Animal Models of Movement Disorders to Human Disease?

Authors: Darryl Bannon, Anne M. Landau, Doris J. Doudet

Published in: Current Neurology and Neuroscience Reports | Issue 8/2015

Login to get access

Abstract

The combination of novel imaging techniques with the use of small animal models of disease is often used in attempt to understand disease mechanisms, design potential clinical biomarkers and therapeutic interventions, and develop novel methods with translatability to human clinical conditions. However, it is clear that most animal models are deficient when compared to the complexity of human diseases: they cannot sufficiently replicate all the features of multisystem disorders. Furthermore, some practical differences may affect the use or interpretation of animal imaging to model human conditions such as the use of anesthesia, various species differences, and limitations of methodological tools. Nevertheless, imaging animal models allows us to dissect, in interpretable bits, the effects of one system upon another, the consequences of variable neuronal losses or overactive systems, the results of experimental treatments, and we can develop and validate new methods. In this review, we focus on imaging modalities that are easily used in both human subjects and animal models such as positron emission and magnetic resonance imaging and discuss aging and Parkinson’s disease as prototypical examples of preclinical imaging studies.
Literature
1.
go back to reference Alstrup AKO, Landau AM, Holden J, Jakobsen S, Schacht SA, Audrain H, et al. Effects of anesthesia and species differences on uptake or binding of radioligands in vivo. Bio Med Res Int. 2013;2013(ID:808713):9. Alstrup AKO, Landau AM, Holden J, Jakobsen S, Schacht SA, Audrain H, et al. Effects of anesthesia and species differences on uptake or binding of radioligands in vivo. Bio Med Res Int. 2013;2013(ID:808713):9.
2.
go back to reference Andersen AH, Hardy PA, Forman E, Gerhardt GA, Gash DM, Grondin RC, et al. Pharmacologic MRI (phMRI) as a tool to differentiate Parkinson's disease-related from age-related changes in basal ganglia function. Neurobiol Aging. 2015;36(2):1174–82.PubMedCrossRef Andersen AH, Hardy PA, Forman E, Gerhardt GA, Gash DM, Grondin RC, et al. Pharmacologic MRI (phMRI) as a tool to differentiate Parkinson's disease-related from age-related changes in basal ganglia function. Neurobiol Aging. 2015;36(2):1174–82.PubMedCrossRef
3.
go back to reference Baba JS, Endres CJ, Foss CA, Nimmagadda S, Jung H, Goddard JS, et al. Molecular imaging of conscious, unrestrained mice with AwakeSPECT. J Nucl Med. 2013;54(6):969–76.PubMedCentralPubMedCrossRef Baba JS, Endres CJ, Foss CA, Nimmagadda S, Jung H, Goddard JS, et al. Molecular imaging of conscious, unrestrained mice with AwakeSPECT. J Nucl Med. 2013;54(6):969–76.PubMedCentralPubMedCrossRef
4.
go back to reference Bagchi DP, Yu L, Perlmutter JS, Xu J, Mach RH, Tu Z, et al. Binding of the radioligand SIL23 to alpha-synuclein fibrils in Parkinson disease brain tissue establishes feasibility and screening approaches for developing a Parkinson disease imaging agent. PLoS One. 2013;8(2):e55031.PubMedCentralPubMedCrossRef Bagchi DP, Yu L, Perlmutter JS, Xu J, Mach RH, Tu Z, et al. Binding of the radioligand SIL23 to alpha-synuclein fibrils in Parkinson disease brain tissue establishes feasibility and screening approaches for developing a Parkinson disease imaging agent. PLoS One. 2013;8(2):e55031.PubMedCentralPubMedCrossRef
5.
go back to reference Bagga P, Chugani AN, Varadarajan KS, Patel AB. In vivo NMR studies of regional cerebral energetics in MPTP model of Parkinson's disease: recovery of cerebral metabolism with acute levodopa treatment. J Neurochem. 2013;127(3):365–77.PubMedCrossRef Bagga P, Chugani AN, Varadarajan KS, Patel AB. In vivo NMR studies of regional cerebral energetics in MPTP model of Parkinson's disease: recovery of cerebral metabolism with acute levodopa treatment. J Neurochem. 2013;127(3):365–77.PubMedCrossRef
6.
go back to reference Braak H, Del Tredici K, Rnb U, De Vos RI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging. 2003;24:197–211.PubMedCrossRef Braak H, Del Tredici K, Rnb U, De Vos RI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging. 2003;24:197–211.PubMedCrossRef
7.
go back to reference Brendel M, Delker A, Rotzer C, Boning G, Carlsen J, Cyran C, et al. Impact of partial volume effect correction on cerebral beta-amyloid imaging in APP-Swe mice using [(18)F]-florbetaben PET. Neuroimage. 2014;84:843–53.PubMedCrossRef Brendel M, Delker A, Rotzer C, Boning G, Carlsen J, Cyran C, et al. Impact of partial volume effect correction on cerebral beta-amyloid imaging in APP-Swe mice using [(18)F]-florbetaben PET. Neuroimage. 2014;84:843–53.PubMedCrossRef
8.
go back to reference Brown CA, Karimi MK, Tian L, Flores H, Su Y, Tabbal SD, et al. Validation of midbrain positron emission tomography measures for nigrostriatal neurons in macaques. Ann Neurol. 2013;74:602–10. Brown CA, Karimi MK, Tian L, Flores H, Su Y, Tabbal SD, et al. Validation of midbrain positron emission tomography measures for nigrostriatal neurons in macaques. Ann Neurol. 2013;74:602–10.
9.
go back to reference Carta M, Carlsson T, Kirik D, Bjorklund A. Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain. 2007;130:1819–33.PubMedCrossRef Carta M, Carlsson T, Kirik D, Bjorklund A. Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain. 2007;130:1819–33.PubMedCrossRef
10.
go back to reference Christian BT, Wooten DW, Hillmer AT, Tudorascu DL, Converse AK, Moore CF, et al. Serotonin transporter genotype affects serotonin 5-HT1A binding in primates. The Journal of Neuroscience. 2013;33(6):2512–6.PubMedCentralPubMedCrossRef Christian BT, Wooten DW, Hillmer AT, Tudorascu DL, Converse AK, Moore CF, et al. Serotonin transporter genotype affects serotonin 5-HT1A binding in primates. The Journal of Neuroscience. 2013;33(6):2512–6.PubMedCentralPubMedCrossRef
11.
go back to reference Cicchetti F, Drouin-Ouellet J, Gross RE. Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci. 2009;30:475–83.PubMedCrossRef Cicchetti F, Drouin-Ouellet J, Gross RE. Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci. 2009;30:475–83.PubMedCrossRef
12.
go back to reference Cumming P, Danielsen EH, Vafaee M, Falborg L, Steffensen E, Sorensen JC, et al. Normalization of markers for dopamine innervation in striatum of MPTP-lesioned miniature pigs with intrastriatal grafts. Acta Neurol Scand. 2001;103:309–15.PubMedCrossRef Cumming P, Danielsen EH, Vafaee M, Falborg L, Steffensen E, Sorensen JC, et al. Normalization of markers for dopamine innervation in striatum of MPTP-lesioned miniature pigs with intrastriatal grafts. Acta Neurol Scand. 2001;103:309–15.PubMedCrossRef
13.
go back to reference Dall AM, Danielsen EH, Sorensen JC, Andersen F, Moller A, Zimmer J, et al. Quantitative [18]fluorodopa/PET and histology of fetal mesencephalic dopaminergic grafts to the striatum of MPTP-poisoned minipigs. Cell Transplant. 2002;11:733–46.PubMed Dall AM, Danielsen EH, Sorensen JC, Andersen F, Moller A, Zimmer J, et al. Quantitative [18]fluorodopa/PET and histology of fetal mesencephalic dopaminergic grafts to the striatum of MPTP-poisoned minipigs. Cell Transplant. 2002;11:733–46.PubMed
14.
go back to reference De La Fuente-Fernández R, Sossi V, Huang Z, Furtado S, Lu J-Q, Calne DB, et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson's disease: implications for dyskinesias. Brain. 2004;127(12):2747–54.PubMedCrossRef De La Fuente-Fernández R, Sossi V, Huang Z, Furtado S, Lu J-Q, Calne DB, et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson's disease: implications for dyskinesias. Brain. 2004;127(12):2747–54.PubMedCrossRef
15.
go back to reference Dinelle K, Holden JE, Sossi V, Doudet DJ. In vivo scatchard studies of the VMAT2 transporter in mice. Mol Imaging Biol. 2010;12 Suppl 1:J615. Dinelle K, Holden JE, Sossi V, Doudet DJ. In vivo scatchard studies of the VMAT2 transporter in mice. Mol Imaging Biol. 2010;12 Suppl 1:J615.
16.
go back to reference Doudet DJ, Aigner TG, Mclellan CA, Cohen RM. Positron emission tomography with 18 F-DOPA: interpretation and biological correlates in non human primates. Psychiatry Res. 1992;45:153–68.PubMedCrossRef Doudet DJ, Aigner TG, Mclellan CA, Cohen RM. Positron emission tomography with 18 F-DOPA: interpretation and biological correlates in non human primates. Psychiatry Res. 1992;45:153–68.PubMedCrossRef
17.
go back to reference Doudet DJ, Chan GLY, Holden JE, Aigner TG, Wyatt RJ, Morrison KS, et al. 6-[18 F]Fluoro-L-DOPA PET studies of the turnover of dopamine in MPTP-induced parkinsonism in monkeys. Synapse. 1998;29:225–32.PubMedCrossRef Doudet DJ, Chan GLY, Holden JE, Aigner TG, Wyatt RJ, Morrison KS, et al. 6-[18 F]Fluoro-L-DOPA PET studies of the turnover of dopamine in MPTP-induced parkinsonism in monkeys. Synapse. 1998;29:225–32.PubMedCrossRef
18.
go back to reference Doudet DJ, Cornfeldt M, Honey C, Schweikert AW, Allen RC. PET imaging of implanted human retinal pigment epithelial cells in the MPTP-induced primate model of Parkinson's disease (PD). Exp Neurol. 2004;89:361–8.CrossRef Doudet DJ, Cornfeldt M, Honey C, Schweikert AW, Allen RC. PET imaging of implanted human retinal pigment epithelial cells in the MPTP-induced primate model of Parkinson's disease (PD). Exp Neurol. 2004;89:361–8.CrossRef
19.
go back to reference Doudet DJ, Jivan S, Ruth TJ, Holden JE. Density and affinity of the dopamine D2 receptors in aged symptomatic and asymptomatic MPTP-treated monkeys: PET studies with [11 C]raclopride. Synapse. 2002;44:198–202.PubMedCrossRef Doudet DJ, Jivan S, Ruth TJ, Holden JE. Density and affinity of the dopamine D2 receptors in aged symptomatic and asymptomatic MPTP-treated monkeys: PET studies with [11 C]raclopride. Synapse. 2002;44:198–202.PubMedCrossRef
20.
go back to reference Doudet DJ, Rosa-Neto P, Munk OL, Ruth TJ, Jivan S, Cumming P. Effect of age on markers for monoaminergic neurons of normal and MPTP-lesioned rhesus monkeys: a multi-tracer PET study. NeuroImage. 2006;30:26–35.PubMedCrossRef Doudet DJ, Rosa-Neto P, Munk OL, Ruth TJ, Jivan S, Cumming P. Effect of age on markers for monoaminergic neurons of normal and MPTP-lesioned rhesus monkeys: a multi-tracer PET study. NeuroImage. 2006;30:26–35.PubMedCrossRef
21.
go back to reference Durand E, Petit O, Tremblay L, Zimmer C, Sgambato-Faure V, Chassain C, et al. Social behavioral changes in MPTP-treated monkey model of Parkinson’s disease. Front Behav Neurosci. 2015;9:42.PubMedCentralPubMedCrossRef Durand E, Petit O, Tremblay L, Zimmer C, Sgambato-Faure V, Chassain C, et al. Social behavioral changes in MPTP-treated monkey model of Parkinson’s disease. Front Behav Neurosci. 2015;9:42.PubMedCentralPubMedCrossRef
22.
go back to reference Eberling JL, Bankiewicz KS, Pivirotto P, Bringas J, Chen K, Nowotnik DP, et al. Dopamine transporter loss and clinical changes in MPTP-lesioned primates. Brain Res. 1999;832:184–7.PubMedCrossRef Eberling JL, Bankiewicz KS, Pivirotto P, Bringas J, Chen K, Nowotnik DP, et al. Dopamine transporter loss and clinical changes in MPTP-lesioned primates. Brain Res. 1999;832:184–7.PubMedCrossRef
23.
go back to reference Eidelberg D. The metabolic landscape of Parkinson’s disease. Adv Neurol. 1999;80:87–97.PubMed Eidelberg D. The metabolic landscape of Parkinson’s disease. Adv Neurol. 1999;80:87–97.PubMed
24.
go back to reference Hadaczek P, Eberling JL, Pivirotto P, Bringas J, Forsayeth J, Bankiewicz KS. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther: J Am Soc Gene Ther. 2010;18(8):1458–61.CrossRef Hadaczek P, Eberling JL, Pivirotto P, Bringas J, Forsayeth J, Bankiewicz KS. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther: J Am Soc Gene Ther. 2010;18(8):1458–61.CrossRef
25.
go back to reference Hannestad J, Gallezot JD, Schafbauer T, Lim K, Kloczynski T, Morris ED, et al. Endotoxin-induced systemic inflammation activates microglia: [(1)(1)C]PBR28 positron emission tomography in nonhuman primates. NeuroImage. 2012;63(1):232–9.PubMedCentralPubMedCrossRef Hannestad J, Gallezot JD, Schafbauer T, Lim K, Kloczynski T, Morris ED, et al. Endotoxin-induced systemic inflammation activates microglia: [(1)(1)C]PBR28 positron emission tomography in nonhuman primates. NeuroImage. 2012;63(1):232–9.PubMedCentralPubMedCrossRef
26.
go back to reference Hikishima K, Ando K, Yano R, Kawai K, Komaki Y, Inoue T, et al. Parkinson disease: diffusion MR imaging to detect nigrostriatal pathway loss in a marmoset model treated with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Radiology. 2015;275(2):430–7.PubMedCrossRef Hikishima K, Ando K, Yano R, Kawai K, Komaki Y, Inoue T, et al. Parkinson disease: diffusion MR imaging to detect nigrostriatal pathway loss in a marmoset model treated with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Radiology. 2015;275(2):430–7.PubMedCrossRef
27.
go back to reference Huang C, Mattis P, Perrine K, Brown N, Dhawan V, Eidelberg D. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology. 2008;70(16 Pt 2):1470–7.PubMedCentralPubMedCrossRef Huang C, Mattis P, Perrine K, Brown N, Dhawan V, Eidelberg D. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology. 2008;70(16 Pt 2):1470–7.PubMedCentralPubMedCrossRef
28.
go back to reference Jakobsen S, Pedersen K, Smith DF, Jensen SB, Munk O, Cumming P. Detection of alpha2 adrenergic receptors in brain of living pig with 11 C-yohimbine. J Nucl Med. 2006;47:2008–15.PubMed Jakobsen S, Pedersen K, Smith DF, Jensen SB, Munk O, Cumming P. Detection of alpha2 adrenergic receptors in brain of living pig with 11 C-yohimbine. J Nucl Med. 2006;47:2008–15.PubMed
29.
go back to reference Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNG in primate models of Parkinson's disease. Science. 2000;290:767–73.PubMedCrossRef Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNG in primate models of Parkinson's disease. Science. 2000;290:767–73.PubMedCrossRef
30.
go back to reference Landau AM, Phan JA, Iversen P, Lillethorup TP, Simonsen M, Wegener G, et al. Decreased in vivo alpha2 adrenoceptor binding in the Flinders sensitive line rat model of depression. Neuropharmacology. 2015;91:97–102.PubMedCrossRef Landau AM, Phan JA, Iversen P, Lillethorup TP, Simonsen M, Wegener G, et al. Decreased in vivo alpha2 adrenoceptor binding in the Flinders sensitive line rat model of depression. Neuropharmacology. 2015;91:97–102.PubMedCrossRef
31.
go back to reference Lee CS, De La Fuente-Fernandez R, Sossi V, Ruth TJ, Schulzer M, Holden JE, et al. In vivo PET studies in normal human subjects show that ratios of DAT to VMAT2 in the striatum decrease with a rostrocaudal gradient and also with aging: implications for the pathogenesis of Parkinson's disease. Neurology. 2000;54:A330. Lee CS, De La Fuente-Fernandez R, Sossi V, Ruth TJ, Schulzer M, Holden JE, et al. In vivo PET studies in normal human subjects show that ratios of DAT to VMAT2 in the striatum decrease with a rostrocaudal gradient and also with aging: implications for the pathogenesis of Parkinson's disease. Neurology. 2000;54:A330.
32.
go back to reference Liu JV, Hirano Y, Nascimento GC, Stefanovic B, Leopold DA, Silva AC. fMRI in the awake marmoset: somatosensory-evoked responses, functional connectivity, and comparison with propofol anesthesia. NeuroImage. 2013;78:186–95.PubMedCentralPubMedCrossRef Liu JV, Hirano Y, Nascimento GC, Stefanovic B, Leopold DA, Silva AC. fMRI in the awake marmoset: somatosensory-evoked responses, functional connectivity, and comparison with propofol anesthesia. NeuroImage. 2013;78:186–95.PubMedCentralPubMedCrossRef
33.
go back to reference Ma Y, Peng S, Spetsieris PG, Sossi V, Eidelberg D, Doudet DJ. Abnormal metabolic brain networks in a nonhuman primate model of parkinsonism. J Cereb Blood Flow Metab. 2012;32(4):633–42.PubMedCentralPubMedCrossRef Ma Y, Peng S, Spetsieris PG, Sossi V, Eidelberg D, Doudet DJ. Abnormal metabolic brain networks in a nonhuman primate model of parkinsonism. J Cereb Blood Flow Metab. 2012;32(4):633–42.PubMedCentralPubMedCrossRef
34.
go back to reference Mackeys S, Jing Y, Flores J, Dinelle K, Doudet DJ. Intranigral administration of an ubiquitin proteasome system inhibitor in rat: behavior, positron emission tomography. Immuno Histochem Exp Neurol. 2013;247:19–24.CrossRef Mackeys S, Jing Y, Flores J, Dinelle K, Doudet DJ. Intranigral administration of an ubiquitin proteasome system inhibitor in rat: behavior, positron emission tomography. Immuno Histochem Exp Neurol. 2013;247:19–24.CrossRef
35.
go back to reference Magen I, Chesselet MF. Genetic mouse models of Parkinson's disease The state of the art. Prog Brain Res. 2010;184:53–87.PubMedCrossRef Magen I, Chesselet MF. Genetic mouse models of Parkinson's disease The state of the art. Prog Brain Res. 2010;184:53–87.PubMedCrossRef
36.
go back to reference Mccormick P, Ginovart N, Wilson A. Isoflurane anaesthesia differentially affects the amphetamine sensitivity of agonist and antagonist D2/D3 positron emission tomography radiotracers: implications for < i > In Vivo</i > imaging of dopamine release. Mol Imaging Biol. 2011;13(4):737–46.PubMedCrossRef Mccormick P, Ginovart N, Wilson A. Isoflurane anaesthesia differentially affects the amphetamine sensitivity of agonist and antagonist D2/D3 positron emission tomography radiotracers: implications for < i > In Vivo</i > imaging of dopamine release. Mol Imaging Biol. 2011;13(4):737–46.PubMedCrossRef
37.
go back to reference Meijer FJ, Goraj B. Brain MRI in Parkinson's disease. Front Biosci (Elite Ed). 2014;6:360–9.CrossRef Meijer FJ, Goraj B. Brain MRI in Parkinson's disease. Front Biosci (Elite Ed). 2014;6:360–9.CrossRef
38.
go back to reference Minuzzi L, Olsen AK, Bender D, Amfred S, Grant R, Danielsen EH, et al. Quantitative autoradiography of ligands for dopamine receptors and transporters in brain of Gottingen minipig: comparison with results in vivo. Synapse. 2006;59:211–9.PubMedCrossRef Minuzzi L, Olsen AK, Bender D, Amfred S, Grant R, Danielsen EH, et al. Quantitative autoradiography of ligands for dopamine receptors and transporters in brain of Gottingen minipig: comparison with results in vivo. Synapse. 2006;59:211–9.PubMedCrossRef
39.
go back to reference Molinet-Dronda F, Gago B, Quiroga-Varela A, Juri C, Collantes M, Delgado M, et al. Monoaminergic PET imaging and histopathological correlation in unilateral and bilateral 6-hydroxydopamine lesioned rat models of Parkinson’s disease: a longitudinal in-vivo study. Neurobiol Dis. 2015;77:165–72.PubMedCrossRef Molinet-Dronda F, Gago B, Quiroga-Varela A, Juri C, Collantes M, Delgado M, et al. Monoaminergic PET imaging and histopathological correlation in unilateral and bilateral 6-hydroxydopamine lesioned rat models of Parkinson’s disease: a longitudinal in-vivo study. Neurobiol Dis. 2015;77:165–72.PubMedCrossRef
40.
go back to reference Nahimi A, Høltzermann M, Landau AM, Simonsen M, Jakobsen S, Alstrup AKO, et al. Serotonergic modulation of receptor occupancy in rats treated with L-DOPA After Unilateral 6-OHDA Lesioning. J Neurochem. 2012;120:806–17.PubMedCrossRef Nahimi A, Høltzermann M, Landau AM, Simonsen M, Jakobsen S, Alstrup AKO, et al. Serotonergic modulation of receptor occupancy in rats treated with L-DOPA After Unilateral 6-OHDA Lesioning. J Neurochem. 2012;120:806–17.PubMedCrossRef
41.
go back to reference Nahimi A, Jakobsen S, Munk OL, Vang K, Phan JA, Rodell A, et al. Mapping alpha2 adrenoceptors of the human brain with 11C-yohimbine. J Nucl Med. 2015;56(3):392–8.PubMedCrossRef Nahimi A, Jakobsen S, Munk OL, Vang K, Phan JA, Rodell A, et al. Mapping alpha2 adrenoceptors of the human brain with 11C-yohimbine. J Nucl Med. 2015;56(3):392–8.PubMedCrossRef
42.
go back to reference Nikolaus S, Larisch R, Vosberg H, Beu M, Wirrwar A, Antke C, et al. Pharmacological challenge and synaptic response—assessing dopaminergic function in the rat striatum with small animal single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Rev Neurosci. 2011;22(6):625–45.PubMedCrossRef Nikolaus S, Larisch R, Vosberg H, Beu M, Wirrwar A, Antke C, et al. Pharmacological challenge and synaptic response—assessing dopaminergic function in the rat striatum with small animal single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Rev Neurosci. 2011;22(6):625–45.PubMedCrossRef
43.
go back to reference Ninerola-Baizan A, Rojas S, Roe-Vellve N, Lomena F, Ros D, Pavia J. Dopamine transporter imaging in the aged rat: a [(1)(2)(3)I]FP-CIT SPECT study. Nucl Med Biol. 2015;42(4):395–8.PubMedCrossRef Ninerola-Baizan A, Rojas S, Roe-Vellve N, Lomena F, Ros D, Pavia J. Dopamine transporter imaging in the aged rat: a [(1)(2)(3)I]FP-CIT SPECT study. Nucl Med Biol. 2015;42(4):395–8.PubMedCrossRef
44.
go back to reference Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa Translocator Protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32(1):1–5.PubMedCentralPubMedCrossRef Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa Translocator Protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32(1):1–5.PubMedCentralPubMedCrossRef
45.
go back to reference Parent M, Bedard MA, Aliaga A, Soucy JP, Landry St-Pierre E, Cyr M, et al. PET imaging of cholinergic deficits in rats using [18F]fluoroethoxybenzovesamicol ([18F]FEOBV). Neuroimage. 2012;62(1):555–61.PubMedCrossRef Parent M, Bedard MA, Aliaga A, Soucy JP, Landry St-Pierre E, Cyr M, et al. PET imaging of cholinergic deficits in rats using [18F]fluoroethoxybenzovesamicol ([18F]FEOBV). Neuroimage. 2012;62(1):555–61.PubMedCrossRef
46.
go back to reference Pellegrino D, Cicchetti F, Wang X, Zhu A, Yu M, Saint-Pierre M, et al. Modulation of dopaminergic and glutamatergic brain function: PET studies on parkinsonian rats. J Nucl Med. 2007;48:1147–53.PubMedCrossRef Pellegrino D, Cicchetti F, Wang X, Zhu A, Yu M, Saint-Pierre M, et al. Modulation of dopaminergic and glutamatergic brain function: PET studies on parkinsonian rats. J Nucl Med. 2007;48:1147–53.PubMedCrossRef
47.
go back to reference Peng S, Doudet D, Dhawan V, Ma Y. Dopamine: PET imaging and Parkinson Disease. In: Subramaniam R, Barrio JR, editors. PET Clinics: Novel Imaging Techniques in Neurodegenerative and Movement Disorders: Elsevier; 2013. p. 469-485. Peng S, Doudet D, Dhawan V, Ma Y. Dopamine: PET imaging and Parkinson Disease. In: Subramaniam R, Barrio JR, editors. PET Clinics: Novel Imaging Techniques in Neurodegenerative and Movement Disorders: Elsevier; 2013. p. 469-485.
48.
go back to reference Phan JA, Landau AM, Wong DF, Jakobsen S, Nahimi A, Doudet DJ, et al. Quantification of [(11)C]yohimbine binding to alpha2 adrenoceptors in rat brain in vivo. J Cereb Blood Flow Metab. 2015;35(3):501–11.PubMedCentralPubMedCrossRef Phan JA, Landau AM, Wong DF, Jakobsen S, Nahimi A, Doudet DJ, et al. Quantification of [(11)C]yohimbine binding to alpha2 adrenoceptors in rat brain in vivo. J Cereb Blood Flow Metab. 2015;35(3):501–11.PubMedCentralPubMedCrossRef
49.
go back to reference Potts LF, Wu H, Singh A, Marcilla I, Luquin MR, Papa SM. Modeling Parkinson’s disease in monkeys for translational studies, a critical analysis. Exp Neurol. 2014;256:133–43.PubMedCrossRef Potts LF, Wu H, Singh A, Marcilla I, Luquin MR, Papa SM. Modeling Parkinson’s disease in monkeys for translational studies, a critical analysis. Exp Neurol. 2014;256:133–43.PubMedCrossRef
50.
go back to reference Ramakrishnan NK, Rybczynska AA, Visser AK, Marosi K, Nyakas CJ, Kwizera C, et al. Small-animal PET with a sigma-ligand, 11C-SA4503, detects spontaneous pituitary tumors in aged rats. J Nucl Med. 2013;54(8):1377–83.PubMedCrossRef Ramakrishnan NK, Rybczynska AA, Visser AK, Marosi K, Nyakas CJ, Kwizera C, et al. Small-animal PET with a sigma-ligand, 11C-SA4503, detects spontaneous pituitary tumors in aged rats. J Nucl Med. 2013;54(8):1377–83.PubMedCrossRef
51.
go back to reference Rinne JO, Laihinen A, Ruottinen H, Ruotsalainen U, Nagren K, Lehikoinen P, et al. Increased density of dopamine D 2 receptors in the putamen, but not in the caudate nucleus in early Parkinson's disease: a PET study with [11 C]raclopride. J Neurol Sci. 1995;132:156–61.PubMedCrossRef Rinne JO, Laihinen A, Ruottinen H, Ruotsalainen U, Nagren K, Lehikoinen P, et al. Increased density of dopamine D 2 receptors in the putamen, but not in the caudate nucleus in early Parkinson's disease: a PET study with [11 C]raclopride. J Neurol Sci. 1995;132:156–61.PubMedCrossRef
52.
go back to reference Sandiego CM, Jin X, Mulnix T, Fowles K, Labaree D, Ropchan J, et al. Awake nonhuman primate brain PET imaging with minimal head restraint: evaluation of GABAA-benzodiazepine binding with 11C-flumazenil in awake and anesthetized animals. J Nucl Med. 2013;54(11):1962–8.PubMedCrossRef Sandiego CM, Jin X, Mulnix T, Fowles K, Labaree D, Ropchan J, et al. Awake nonhuman primate brain PET imaging with minimal head restraint: evaluation of GABAA-benzodiazepine binding with 11C-flumazenil in awake and anesthetized animals. J Nucl Med. 2013;54(11):1962–8.PubMedCrossRef
53.
go back to reference Shah M, Seibyl J, Cartier A, Bhatt R, Catafau AM. Molecular imaging insights into neurodegeneration: focus on alpha-synuclein radiotracers. J Nucl Med. 2014;55(9):1397–400.PubMedCrossRef Shah M, Seibyl J, Cartier A, Bhatt R, Catafau AM. Molecular imaging insights into neurodegeneration: focus on alpha-synuclein radiotracers. J Nucl Med. 2014;55(9):1397–400.PubMedCrossRef
54.
go back to reference Snow BJ, Tooyama I, Mcgeer EG, Yamada T, Calne DB, Takahashi H, et al. Correlations in humans between premortem [18 F]fluorodopa uptake, postmortem dopaminergic cell counts and striatal dopamine levels. Ann Neurol. 1993;34:324–30.PubMedCrossRef Snow BJ, Tooyama I, Mcgeer EG, Yamada T, Calne DB, Takahashi H, et al. Correlations in humans between premortem [18 F]fluorodopa uptake, postmortem dopaminergic cell counts and striatal dopamine levels. Ann Neurol. 1993;34:324–30.PubMedCrossRef
55.
go back to reference Sossi V, Dinelle K, Jivan S, Fisher K, Holden J, Doudet DJ. In vivo dopamine transporter imaging in a unilateral 6-hydroxydopamine rat model of Parkinson's disease using 11C-methylphenidate PET. J Nucl Med. 2012;53:813–22.PubMedCrossRef Sossi V, Dinelle K, Jivan S, Fisher K, Holden J, Doudet DJ. In vivo dopamine transporter imaging in a unilateral 6-hydroxydopamine rat model of Parkinson's disease using 11C-methylphenidate PET. J Nucl Med. 2012;53:813–22.PubMedCrossRef
56.
go back to reference Sossi V, Holden JE, Topping GJ, Camborde ML, Kornelsen RA, Mccormick SE, et al. In vivo measurement of density and affinity of the monoamine vesicular transporter in a unilateral 6-hydroxydopamine rat model of PD. J Cereb Blood Flow Metab. 2007;27:1407–15.PubMedCrossRef Sossi V, Holden JE, Topping GJ, Camborde ML, Kornelsen RA, Mccormick SE, et al. In vivo measurement of density and affinity of the monoamine vesicular transporter in a unilateral 6-hydroxydopamine rat model of PD. J Cereb Blood Flow Metab. 2007;27:1407–15.PubMedCrossRef
57.
go back to reference Stoessl AJ, Halliday GM. DAT-SPECT diagnoses dopamine depletion, but not PD. Mov Disord. 2014;29(14):1705–6.PubMedCrossRef Stoessl AJ, Halliday GM. DAT-SPECT diagnoses dopamine depletion, but not PD. Mov Disord. 2014;29(14):1705–6.PubMedCrossRef
58.
go back to reference Strome EM, Doudet D. Animal models of neurodegenerative disease: insight from in vivo imaging studies. Mol Imaging Biol. 2007;9(4):186–95.PubMedCrossRef Strome EM, Doudet D. Animal models of neurodegenerative disease: insight from in vivo imaging studies. Mol Imaging Biol. 2007;9(4):186–95.PubMedCrossRef
59.
go back to reference Sun W, Sugiyama K, Asakawa T, Yamaguchi H, Akamine S, Ouchi Y, et al. Dynamic changes of striatal dopamine D2 receptor binding at later stages after unilateral lesions of the medial forebrain bundle in Parkinsonian rat models. Neurosci Lett. 2011;496(3):157–62.PubMedCrossRef Sun W, Sugiyama K, Asakawa T, Yamaguchi H, Akamine S, Ouchi Y, et al. Dynamic changes of striatal dopamine D2 receptor binding at later stages after unilateral lesions of the medial forebrain bundle in Parkinsonian rat models. Neurosci Lett. 2011;496(3):157–62.PubMedCrossRef
60.
go back to reference Suzuki M, Hatano K, Sakiyama Y, Kawasumi Y, Kato T, Ito K. Age-related changes of dopamine D1-like and D2-like receptor binding in the F344/N rat striatum revealed by positron emission tomography and in vitro receptor autoradiograph. Synapse. 2001:41-285. Suzuki M, Hatano K, Sakiyama Y, Kawasumi Y, Kato T, Ito K. Age-related changes of dopamine D1-like and D2-like receptor binding in the F344/N rat striatum revealed by positron emission tomography and in vitro receptor autoradiograph. Synapse. 2001:41-285.
61.
go back to reference Syvänen S, Lindhe Ö, Palner M, Kornum BR, Rahman O, Långström B, et al. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-Glycoprotein transport. Drug Metab Dispos. 2009;37(3):635–43.PubMedCrossRef Syvänen S, Lindhe Ö, Palner M, Kornum BR, Rahman O, Långström B, et al. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-Glycoprotein transport. Drug Metab Dispos. 2009;37(3):635–43.PubMedCrossRef
62.
go back to reference Tabbal SD, Mink JW, Antenor JV, Carl JL, Moerlein SM, Perlmutter JS. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced acute transient dystonia in monkeys associated with low striatal dopamine. Neuroscience. 2006;141(3):1281–7.PubMedCrossRef Tabbal SD, Mink JW, Antenor JV, Carl JL, Moerlein SM, Perlmutter JS. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced acute transient dystonia in monkeys associated with low striatal dopamine. Neuroscience. 2006;141(3):1281–7.PubMedCrossRef
63.
go back to reference Tokugawa J, Ravasi L, Nakayama T, Lang L, Schmidt K, Seidel J, et al. Distribution of the 5-HT1A receptor antagonist [18F]FPWAY in blood and brain of the rat with and without isoflurane anesthesia. Eur J Nucl Med Mol Imaging. 2007;34:259–66.PubMedCrossRef Tokugawa J, Ravasi L, Nakayama T, Lang L, Schmidt K, Seidel J, et al. Distribution of the 5-HT1A receptor antagonist [18F]FPWAY in blood and brain of the rat with and without isoflurane anesthesia. Eur J Nucl Med Mol Imaging. 2007;34:259–66.PubMedCrossRef
64.
go back to reference Topping GJ, Dinelle K, Kornelsen R, Mccormick S, Holden JE, Sossi V. Positron emission tomography kinetic modeling algorithms for small animal dopaminergic system imaging. Synapse. 2010;64(3):200–8.PubMedCrossRef Topping GJ, Dinelle K, Kornelsen R, Mccormick S, Holden JE, Sossi V. Positron emission tomography kinetic modeling algorithms for small animal dopaminergic system imaging. Synapse. 2010;64(3):200–8.PubMedCrossRef
65.
go back to reference Tournier N, Valette H, Peyronneau M-A, Saba W, Goutal S, Kuhnast B, et al. Transport of selected PET radiotracers by human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2): an in vitro screening. Journal of Nuclear Medicine. 2011;52(3):415–23.PubMedCrossRef Tournier N, Valette H, Peyronneau M-A, Saba W, Goutal S, Kuhnast B, et al. Transport of selected PET radiotracers by human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2): an in vitro screening. Journal of Nuclear Medicine. 2011;52(3):415–23.PubMedCrossRef
66.
go back to reference Tsukada H, Nishiyama S, Ohba H, Kanazawa M, Kakiuchi T, Harada N. Comparing amyloid-beta deposition, neuroinflammation, glucose metabolism, and mitochondrial complex I activity in brain: a PET study in aged monkeys. Eur J Nucl Med Mol Imaging. 2014;41(11):2127–36.PubMedCrossRef Tsukada H, Nishiyama S, Ohba H, Kanazawa M, Kakiuchi T, Harada N. Comparing amyloid-beta deposition, neuroinflammation, glucose metabolism, and mitochondrial complex I activity in brain: a PET study in aged monkeys. Eur J Nucl Med Mol Imaging. 2014;41(11):2127–36.PubMedCrossRef
67.
go back to reference Tsukada H, Sato K, Kakiuchi T, Nishiyama S. Age-related impairment of coupling mechanism between neuronal activation and functional cerebral blood flow response was restored by cholinesterase inhibition: PET study with microdialysis in the awake monkey brain. Brain Res. 2000;857:158–64.PubMedCrossRef Tsukada H, Sato K, Kakiuchi T, Nishiyama S. Age-related impairment of coupling mechanism between neuronal activation and functional cerebral blood flow response was restored by cholinesterase inhibition: PET study with microdialysis in the awake monkey brain. Brain Res. 2000;857:158–64.PubMedCrossRef
68.
go back to reference Van Camp N, Boisgard R, Kuhnast B, Thézé B, Viel T, Grégoire M-C, et al. In vivo imaging of neuroinflammation: a comparative study between [18F]PBR11; [11C]CLINME and [11C]PK11195 in an acute rodent model. Eur J Nucl Med Mol Imaging. 2010;37(5):962–72.PubMedCrossRef Van Camp N, Boisgard R, Kuhnast B, Thézé B, Viel T, Grégoire M-C, et al. In vivo imaging of neuroinflammation: a comparative study between [18F]PBR11; [11C]CLINME and [11C]PK11195 in an acute rodent model. Eur J Nucl Med Mol Imaging. 2010;37(5):962–72.PubMedCrossRef
69.
go back to reference Van Der Perren A, Toelen J, Casteels C, Macchi F, Van Rompuy AS, Sarre S, et al. Longitudinal follow-up and characterization of a robust rat model for Parkinson’s disease based on overexpression of alpha-synuclein with adeno-associated viral vectors. Neurobiol Aging. 2015;36(3):1543–58.PubMedCrossRef Van Der Perren A, Toelen J, Casteels C, Macchi F, Van Rompuy AS, Sarre S, et al. Longitudinal follow-up and characterization of a robust rat model for Parkinson’s disease based on overexpression of alpha-synuclein with adeno-associated viral vectors. Neurobiol Aging. 2015;36(3):1543–58.PubMedCrossRef
70.
go back to reference Van Vliet SA, Blezer EL, Jongsma MJ, Vanwersch RA, Olivier B, Philippens IH. Exploring the neuroprotective effects of modafinil in a marmoset Parkinson model with immunohistochemistry, magnetic resonance imaging and spectroscopy. Brain Res. 2008;1189:219–28.PubMedCrossRef Van Vliet SA, Blezer EL, Jongsma MJ, Vanwersch RA, Olivier B, Philippens IH. Exploring the neuroprotective effects of modafinil in a marmoset Parkinson model with immunohistochemistry, magnetic resonance imaging and spectroscopy. Brain Res. 2008;1189:219–28.PubMedCrossRef
71.
go back to reference Vezoli J, Dzahini K, Costes N, Wilson CR, Fifel K, Cooper HM, et al. Increased DAT binding in the early stage of the dopaminergic lesion: a longitudinal [11C]PE2I binding study in the MPTP-monkey. Neuroimage. 2014;102(Pt 2):249–61.PubMedCrossRef Vezoli J, Dzahini K, Costes N, Wilson CR, Fifel K, Cooper HM, et al. Increased DAT binding in the early stage of the dopaminergic lesion: a longitudinal [11C]PE2I binding study in the MPTP-monkey. Neuroimage. 2014;102(Pt 2):249–61.PubMedCrossRef
72.
go back to reference Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 2007;447(7140):83–6.PubMedCrossRef Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 2007;447(7140):83–6.PubMedCrossRef
73.
go back to reference Walker MD, Dinelle K, Kornelsen R, Lee NV, Miao Q, Adam M, et al. [C]PBR28 PET imaging is sensitive to neuroinflammation in the aged rat. J Cereb Blood Flow Metab. 2015 Apr 1. Walker MD, Dinelle K, Kornelsen R, Lee NV, Miao Q, Adam M, et al. [C]PBR28 PET imaging is sensitive to neuroinflammation in the aged rat. J Cereb Blood Flow Metab. 2015 Apr 1.
74.
go back to reference Walker MD, Dinelle K, Kornelsen R, Mccormick S, Mah C, Holden JE, et al. In-vivo measurement of LDOPA uptake, dopamine reserve and turnover in the rat brain using [18F]FDOPA PET. J Cereb Blood Flow Metab. 2013;33(1):59–66.PubMedCentralPubMedCrossRef Walker MD, Dinelle K, Kornelsen R, Mccormick S, Mah C, Holden JE, et al. In-vivo measurement of LDOPA uptake, dopamine reserve and turnover in the rat brain using [18F]FDOPA PET. J Cereb Blood Flow Metab. 2013;33(1):59–66.PubMedCentralPubMedCrossRef
75.
go back to reference Walker MD, Volta M, Cataldi S, Dinelle K, Beccano-Kelly D, Munsie L, et al. Behavioral deficits and striatal DA signaling in LRRK2 p.G2019S transgenic rats: a multimodal investigation including PET neuroimaging. J Parkinsons Dis. 2014;4(3):483–98.PubMed Walker MD, Volta M, Cataldi S, Dinelle K, Beccano-Kelly D, Munsie L, et al. Behavioral deficits and striatal DA signaling in LRRK2 p.G2019S transgenic rats: a multimodal investigation including PET neuroimaging. J Parkinsons Dis. 2014;4(3):483–98.PubMed
76.
go back to reference Wu B, Song B, Tian S, Huo S, Cui C, Guo Y, et al. Central nervous system damage due to acute paraquat poisoning: a neuroimaging study with 3.0 T MRI. Neurotoxicology. 2012;33(5):1330–7.PubMedCrossRef Wu B, Song B, Tian S, Huo S, Cui C, Guo Y, et al. Central nervous system damage due to acute paraquat poisoning: a neuroimaging study with 3.0 T MRI. Neurotoxicology. 2012;33(5):1330–7.PubMedCrossRef
77.
go back to reference Zimmer ER, Leuzy A, Bhat V, Gauthier S, Rosa-Neto P. In vivo tracking of tau pathology using positron emission tomography (PET) molecular imaging in small animals. Trans Neurodegeneration. 2014;3(1):6.CrossRef Zimmer ER, Leuzy A, Bhat V, Gauthier S, Rosa-Neto P. In vivo tracking of tau pathology using positron emission tomography (PET) molecular imaging in small animals. Trans Neurodegeneration. 2014;3(1):6.CrossRef
Metadata
Title
How Relevant Are Imaging Findings in Animal Models of Movement Disorders to Human Disease?
Authors
Darryl Bannon
Anne M. Landau
Doris J. Doudet
Publication date
01-08-2015
Publisher
Springer US
Published in
Current Neurology and Neuroscience Reports / Issue 8/2015
Print ISSN: 1528-4042
Electronic ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-015-0571-z

Other articles of this Issue 8/2015

Current Neurology and Neuroscience Reports 8/2015 Go to the issue

Behavior (HS Kirshner, Section Editor)

Update in Aphasia Research

Dementia (KS Marder, Section Editor)

TMS as a Tool for Examining Cognitive Processing

Demyelinating Disorders (DN Bourdette and M Cameron, Section Editors)

A Clinical Approach to the Differential Diagnosis of Multiple Sclerosis

Neurology of Systemic Diseases (J Biller, Section Editor)

Neurologic Complications of Chronic Kidney Disease