Skip to main content
Top
Published in: Current Allergy and Asthma Reports 3/2012

01-06-2012 | ASTHMA (WJ CALHOUN AND J BOUSQUET, SECTION EDITORS)

Diagnosis of Occupational Asthma: An Update

Authors: Edgardo J. Jares, Carlos E. Baena-Cagnani, R. Maximiliano Gómez

Published in: Current Allergy and Asthma Reports | Issue 3/2012

Login to get access

Abstract

Work-related asthma (WRA) includes patients with sensitizer- and/or irritant-induced asthma in the workplace, as well as patients with preexisting asthma that is worsened by work factors. WRA is underdiagnosed; thus, the diagnosis is critical to prevent disease progression and its potential for morbidity and mortality. The interview is the first diagnostic tool to be used by physicians, and the question, “Does asthma improve away from work?” is of the highest sensitivity. However, history can show numerous false positives, and the relationships between asthma worsening and work should be confirmed by objective methods such as peak expiratory flow (PEF) at and away from work. PEF sensitivity and specificity can be enhanced in combination with nonspecific bronchial hyperresponsiveness to histamine/methacholine (NSBP) before and after 2 weeks at work and a similar period off work. Immunologic testing, especially skin prick test (SPT) or specific IgE, is useful for high molecular weight allergens and some low molecular weight agents. Other immunologic tests, as well as induced sputum, measurement of exhaled nitric oxide, exhaled breath condensate, and specific inhalation challenge (SIC) are methods that contribute to the diagnosis and are typically performed at specialized facilities. A diagnosis of occupational asthma (OA) should no longer be based on a compatible history only but should be confirmed by means of objective testing. SIC is the diagnostic gold standard. When SIC is not available, the combination of PEF measurement, NSBP test , a specific SPT, or specific IgE may be an appropriate alternative in diagnosing OA.
Literature
1.
go back to reference Tarlo SM, Balmes J, Balkissoon R, Beach J, Beckett W, Bernstein D, et al. Diagnosis and management of work-related asthma: American College of Chest Physicians consensus statement. Chest. 2008;134(3 Suppl):1S–41S.PubMedCrossRef Tarlo SM, Balmes J, Balkissoon R, Beach J, Beckett W, Bernstein D, et al. Diagnosis and management of work-related asthma: American College of Chest Physicians consensus statement. Chest. 2008;134(3 Suppl):1S–41S.PubMedCrossRef
2.
go back to reference •• Henneberger PK, Redlich CA, Callahan DB, Harber P, Lemière C, Martin J, et al. Work-exacerbated asthma. Am J Respir Crit Care Med. 2011;184(3):368–78. This excellent review is the American Thoracic Society statement on WEA..PubMedCrossRef •• Henneberger PK, Redlich CA, Callahan DB, Harber P, Lemière C, Martin J, et al. Work-exacerbated asthma. Am J Respir Crit Care Med. 2011;184(3):368–78. This excellent review is the American Thoracic Society statement on WEA..PubMedCrossRef
3.
go back to reference Cartier A, Sastre J. Clinical assessment of occupational asthma and its differential diagnosis. Immunol Allergy Clin North Am. 2011;31(4):717–28.PubMedCrossRef Cartier A, Sastre J. Clinical assessment of occupational asthma and its differential diagnosis. Immunol Allergy Clin North Am. 2011;31(4):717–28.PubMedCrossRef
4.
go back to reference Kenyon NJ, Morrissey BM, Schivo M, Albertson TE. Occupational asthma. Clin Rev Allergy Immunol. 2011 May 15. [Epub ahead of print] Kenyon NJ, Morrissey BM, Schivo M, Albertson TE. Occupational asthma. Clin Rev Allergy Immunol. 2011 May 15. [Epub ahead of print]
5.
go back to reference Cowl CT. Occupational asthma: review of assessment, treatment, and compensation. Chest. 2011;139(3):674–81.PubMedCrossRef Cowl CT. Occupational asthma: review of assessment, treatment, and compensation. Chest. 2011;139(3):674–81.PubMedCrossRef
6.
go back to reference Goe SK, Henneberger PK, Reilly MJ, Rosenman KD, Schill DP, Valiante D, et al. A descriptive study of work aggravated asthma. Occup Environ Med. 2004;61:512–7.PubMedCrossRef Goe SK, Henneberger PK, Reilly MJ, Rosenman KD, Schill DP, Valiante D, et al. A descriptive study of work aggravated asthma. Occup Environ Med. 2004;61:512–7.PubMedCrossRef
7.
go back to reference Berger Z, Rom WN, Reibman J, Kim M, Zhang S, Luo L, et al. Prevalence of workplace exacerbation of asthma symptoms in an urban working population of asthmatics. J Occup Environ Med. 2006;48:833–9.PubMedCrossRef Berger Z, Rom WN, Reibman J, Kim M, Zhang S, Luo L, et al. Prevalence of workplace exacerbation of asthma symptoms in an urban working population of asthmatics. J Occup Environ Med. 2006;48:833–9.PubMedCrossRef
8.
9.
go back to reference • Fishwick D, Barber CM, Bradshaw LM, Ayres JG, Barraclough R, Burge S, et al. Standards of care for occupational asthma: an update. Thorax. 2012;67(3):278–80. These are the British Thoracic Society consensus guidelines update on the standards of care for asthma in the workplace..PubMedCrossRef • Fishwick D, Barber CM, Bradshaw LM, Ayres JG, Barraclough R, Burge S, et al. Standards of care for occupational asthma: an update. Thorax. 2012;67(3):278–80. These are the British Thoracic Society consensus guidelines update on the standards of care for asthma in the workplace..PubMedCrossRef
10.
go back to reference Gannon PFG, Weir DC, Robertson AS, et al. Health, employment and financial outcomes in workers with occupational asthma. Br J Ind Med. 1993;50:491–6.PubMed Gannon PFG, Weir DC, Robertson AS, et al. Health, employment and financial outcomes in workers with occupational asthma. Br J Ind Med. 1993;50:491–6.PubMed
11.
go back to reference Vandenplas O, Jamart J, Delwiche JP, et al. Occupational asthma caused by natural rubber latex: outcome according to cessation or reduction of exposure. J Allergy Clin Immunol. 2002;109:125–30.PubMedCrossRef Vandenplas O, Jamart J, Delwiche JP, et al. Occupational asthma caused by natural rubber latex: outcome according to cessation or reduction of exposure. J Allergy Clin Immunol. 2002;109:125–30.PubMedCrossRef
12.
go back to reference Vandenplas O, Toren K, Blanc PD. Health and socioeconomic impact of work-related asthma. Eur Respir J. 2003;22:689–97.PubMedCrossRef Vandenplas O, Toren K, Blanc PD. Health and socioeconomic impact of work-related asthma. Eur Respir J. 2003;22:689–97.PubMedCrossRef
13.
go back to reference Piirila PL, Keskinen HM, Luukkonen R, Salo SP, Tuppurainen M, Nordman H. Work, unemployment and life satisfaction among patients with diisocyanate induced asthma: a prospective study. J Occup Health. 2005;47:112–8.PubMedCrossRef Piirila PL, Keskinen HM, Luukkonen R, Salo SP, Tuppurainen M, Nordman H. Work, unemployment and life satisfaction among patients with diisocyanate induced asthma: a prospective study. J Occup Health. 2005;47:112–8.PubMedCrossRef
14.
go back to reference Vandenplas O, Dressel H, Wilken D, Jamart J, Heederik D, Maestrelli P, et al. Management of occupational asthma: cessation or reduction of exposure? A systematic review of available evidence. Eur Respir J. 2011;38(4):804–11.PubMedCrossRef Vandenplas O, Dressel H, Wilken D, Jamart J, Heederik D, Maestrelli P, et al. Management of occupational asthma: cessation or reduction of exposure? A systematic review of available evidence. Eur Respir J. 2011;38(4):804–11.PubMedCrossRef
15.
go back to reference Talini D, Novelli F, Melosini L, Bacci E, Bartoli ML, Cianchetti S, et al. May the reduction of exposure to specific sensitizers be an alternative to work cessation in occupational asthma? Results from a follow-up study. Int Arch Allergy Immunol. 2011;157(2):186–93.PubMedCrossRef Talini D, Novelli F, Melosini L, Bacci E, Bartoli ML, Cianchetti S, et al. May the reduction of exposure to specific sensitizers be an alternative to work cessation in occupational asthma? Results from a follow-up study. Int Arch Allergy Immunol. 2011;157(2):186–93.PubMedCrossRef
16.
go back to reference de Groene GJ, Pal TM, Beach J, Tarlo SM, Spreeuwers D, Frings-Dresen MH, Mattioli S, Verbeek JH. Workplace interventions for treatment of occupational asthma. Cochrane Database Syst Rev. 2011 May 11;(5):CD006308. de Groene GJ, Pal TM, Beach J, Tarlo SM, Spreeuwers D, Frings-Dresen MH, Mattioli S, Verbeek JH. Workplace interventions for treatment of occupational asthma. Cochrane Database Syst Rev. 2011 May 11;(5):CD006308.
17.
go back to reference Chan-Yeung M, Lam S, Koener S. Clinical features and natural history of occupational asthma due to western red Cedar (Thuja plicata). Am J Med. 1982;72:411–5.PubMedCrossRef Chan-Yeung M, Lam S, Koener S. Clinical features and natural history of occupational asthma due to western red Cedar (Thuja plicata). Am J Med. 1982;72:411–5.PubMedCrossRef
18.
go back to reference Burge PS. Non-specific hyperreactivity in workers exposed to toluene diisocyanate, diphenyl methane diisocyanate and colophony. Eur J Respir Dis. 1982;63:91–6. Burge PS. Non-specific hyperreactivity in workers exposed to toluene diisocyanate, diphenyl methane diisocyanate and colophony. Eur J Respir Dis. 1982;63:91–6.
19.
go back to reference Rosenberg N, Garnier R, Rousselin X, et al. Clinical and socio-professional fate of isocyanate-induced asthma. Clin Allergy. 1987;17:55–61.PubMedCrossRef Rosenberg N, Garnier R, Rousselin X, et al. Clinical and socio-professional fate of isocyanate-induced asthma. Clin Allergy. 1987;17:55–61.PubMedCrossRef
20.
go back to reference Di Giampaolo L, Cavallucci E, Braga M, Renzetti A, Schiavone C, Quecchia C, et al. The persistence of allergen exposure favors pulmonary function decline in workers with allergic occupational asthma. Int Arch Occup Environ Health. 2012;85(2):181–8.PubMedCrossRef Di Giampaolo L, Cavallucci E, Braga M, Renzetti A, Schiavone C, Quecchia C, et al. The persistence of allergen exposure favors pulmonary function decline in workers with allergic occupational asthma. Int Arch Occup Environ Health. 2012;85(2):181–8.PubMedCrossRef
21.
22.
go back to reference Malo JL, Ghezzo H, L’Archevêque J, et al. Is the clinical history a satisfactory means of diagnosing occupational asthma? Am Rev Respir Dis. 1991;143(3):528–32.PubMed Malo JL, Ghezzo H, L’Archevêque J, et al. Is the clinical history a satisfactory means of diagnosing occupational asthma? Am Rev Respir Dis. 1991;143(3):528–32.PubMed
23.
go back to reference Dykewicz M. Occupational asthma: current concepts in pathogenesis, diagnosis, and management. J Allergy Clin Immunol. 2009;123:519–28.PubMedCrossRef Dykewicz M. Occupational asthma: current concepts in pathogenesis, diagnosis, and management. J Allergy Clin Immunol. 2009;123:519–28.PubMedCrossRef
24.
go back to reference Corradi M, Romano C, Mutti A. Laboratory animal; allergy; asthma. Med Lav. 2011;102(5):428–44.PubMed Corradi M, Romano C, Mutti A. Laboratory animal; allergy; asthma. Med Lav. 2011;102(5):428–44.PubMed
25.
go back to reference Malo JL, Ghezzo H, D’Aquino C, L’Archevêque J, Cartier A, Chan-Yeung M. Natural history of occupational asthma: relevance of type of agent and other factors in the rate of development of symptoms in affected subjects. J Allergy Clin Immunol. 1992;90:937–44.PubMedCrossRef Malo JL, Ghezzo H, D’Aquino C, L’Archevêque J, Cartier A, Chan-Yeung M. Natural history of occupational asthma: relevance of type of agent and other factors in the rate of development of symptoms in affected subjects. J Allergy Clin Immunol. 1992;90:937–44.PubMedCrossRef
26.
go back to reference Walusiak J, Hanke W, Górski P, Pałczyński C. Respiratory allergy in apprentice bakers: do occupational allergies follow the allergic march? Allergy. 2004;59(4):442–50.PubMedCrossRef Walusiak J, Hanke W, Górski P, Pałczyński C. Respiratory allergy in apprentice bakers: do occupational allergies follow the allergic march? Allergy. 2004;59(4):442–50.PubMedCrossRef
27.
28.
go back to reference Brooks SM, Bernstein IL. Irritant-induced airway disorders. Immunol Allergy Clin North Am. 2011;31(4):747–68.PubMedCrossRef Brooks SM, Bernstein IL. Irritant-induced airway disorders. Immunol Allergy Clin North Am. 2011;31(4):747–68.PubMedCrossRef
29.
go back to reference Quirce S, Barranco P. Cleaning agents and asthma. J Investig Allergol Clin Immunol. 2010;20(7):542–50.PubMed Quirce S, Barranco P. Cleaning agents and asthma. J Investig Allergol Clin Immunol. 2010;20(7):542–50.PubMed
30.
go back to reference Brooks SM, Weiss MA, Bernstein IL. Reactive airways dysfunction syndrome (RADS). Persistent asthma syndrome after high level irritant exposures. Chest. 1985;88(3):376–84.PubMedCrossRef Brooks SM, Weiss MA, Bernstein IL. Reactive airways dysfunction syndrome (RADS). Persistent asthma syndrome after high level irritant exposures. Chest. 1985;88(3):376–84.PubMedCrossRef
31.
go back to reference Brooks SM, Hammad Y, Richards I, et al. The spectrum of irritant-induced asthma: sudden and not-so-sudden onset and the role of allergy. Chest. 1998;113:42–9.PubMedCrossRef Brooks SM, Hammad Y, Richards I, et al. The spectrum of irritant-induced asthma: sudden and not-so-sudden onset and the role of allergy. Chest. 1998;113:42–9.PubMedCrossRef
32.
go back to reference Tarlo SM. Workplace irritant exposures: do they produce true occupational asthma? Ann Allergy Asthma Immunol. 2003;90:19–23.PubMedCrossRef Tarlo SM. Workplace irritant exposures: do they produce true occupational asthma? Ann Allergy Asthma Immunol. 2003;90:19–23.PubMedCrossRef
34.
go back to reference Burge PS, Moore VC, Robertson AS. Sensitization and irritant-induced occupational asthma with latency are clinically indistinguishable. Occup Med (Lond). 2011 Dec 22. [Epub ahead of print]. Burge PS, Moore VC, Robertson AS. Sensitization and irritant-induced occupational asthma with latency are clinically indistinguishable. Occup Med (Lond). 2011 Dec 22. [Epub ahead of print].
35.
go back to reference Vandenplas O, Ghezzo H, Munoz X, et al. What are the questionnaire items most useful in identifying subjects with occupational asthma? Eur Respir J. 2005;26:1056–63.PubMedCrossRef Vandenplas O, Ghezzo H, Munoz X, et al. What are the questionnaire items most useful in identifying subjects with occupational asthma? Eur Respir J. 2005;26:1056–63.PubMedCrossRef
36.
go back to reference Grammer LC, Ditto AM, Tripathi A, Harris KE. Prevalence and onset of rhinitis and conjunctivitis in subjects with occupational asthma caused by trimellitic anhydride. J Occup Environ Med. 2002;44:1179–81.PubMedCrossRef Grammer LC, Ditto AM, Tripathi A, Harris KE. Prevalence and onset of rhinitis and conjunctivitis in subjects with occupational asthma caused by trimellitic anhydride. J Occup Environ Med. 2002;44:1179–81.PubMedCrossRef
37.
go back to reference Karjalainen A, Martikainen R, Klaukka T, Saarinen K, Uitti J. Risk of asthma among Finnish patients with occupational rhinitis. Chest. 2003;123:283–8.PubMedCrossRef Karjalainen A, Martikainen R, Klaukka T, Saarinen K, Uitti J. Risk of asthma among Finnish patients with occupational rhinitis. Chest. 2003;123:283–8.PubMedCrossRef
38.
go back to reference Arif AA, Delclos GL. Association between cleaning-related chemicals and work-related asthma and asthma symptoms among healthcare professionals. Occup Environ Med. 2012;69(1):35–40.PubMedCrossRef Arif AA, Delclos GL. Association between cleaning-related chemicals and work-related asthma and asthma symptoms among healthcare professionals. Occup Environ Med. 2012;69(1):35–40.PubMedCrossRef
39.
40.
go back to reference Baur XI. Are we closer to developing threshold limit values for allergens in the workplace? Ann Allergy Asthma Immunol. 2003;90(suppl):11–8.PubMedCrossRef Baur XI. Are we closer to developing threshold limit values for allergens in the workplace? Ann Allergy Asthma Immunol. 2003;90(suppl):11–8.PubMedCrossRef
41.
go back to reference Petsonk EL, Wang ML, Lewis DM, et al. Asthma-like symptoms in wood product plant workers exposed to methylene diphenyl diisocyanate. Chest. 2000;118:1183–93.PubMedCrossRef Petsonk EL, Wang ML, Lewis DM, et al. Asthma-like symptoms in wood product plant workers exposed to methylene diphenyl diisocyanate. Chest. 2000;118:1183–93.PubMedCrossRef
42.
go back to reference Bello DHC, Smith TJ, Woskie SR, et al. Skin exposure to isocyanates: reasons for concern. Environ Health Perspect. 2007;115:328–35.PubMedCrossRef Bello DHC, Smith TJ, Woskie SR, et al. Skin exposure to isocyanates: reasons for concern. Environ Health Perspect. 2007;115:328–35.PubMedCrossRef
43.
go back to reference Wisnewski AV, Xu L, Robinson E, Liu J, Redlich CA, Herrick CA. Immune sensitization to methylene diphenyl diisocyanate (MDI) resulting from skin exposure: albumin as a carrier protein connecting skin exposure to subsequent respiratory responses. J Occup Med Toxicol. 2011;6:6.PubMedCrossRef Wisnewski AV, Xu L, Robinson E, Liu J, Redlich CA, Herrick CA. Immune sensitization to methylene diphenyl diisocyanate (MDI) resulting from skin exposure: albumin as a carrier protein connecting skin exposure to subsequent respiratory responses. J Occup Med Toxicol. 2011;6:6.PubMedCrossRef
44.
go back to reference Arrandale VH, Liss GM, Tarlo SM, Pratt MD, Sasseville D, Kudla I, et al. Occupational contact allergens: are they also associated with occupational asthma? Am J Ind Med. 2012 Jan 11. doi:10.1002/ajim.22015. [Epub ahead of print]. Arrandale VH, Liss GM, Tarlo SM, Pratt MD, Sasseville D, Kudla I, et al. Occupational contact allergens: are they also associated with occupational asthma? Am J Ind Med. 2012 Jan 11. doi:10.​1002/​ajim.​22015. [Epub ahead of print].
45.
go back to reference Beach J, Rowe B, Blitz S, et al. Diagnosis and management of work-related asthma. summary, evidence report/technology assessment. Rockville, MD: Agency for Healthcare Research and Quality, Department of Health and Human Services, October 2005; Publication No. 06-E003-1. Beach J, Rowe B, Blitz S, et al. Diagnosis and management of work-related asthma. summary, evidence report/technology assessment. Rockville, MD: Agency for Healthcare Research and Quality, Department of Health and Human Services, October 2005; Publication No. 06-E003-1.
46.
go back to reference Liss GM, Tarlo SM. Peak expiratory flow rates in possible occupational asthma. Chest. 1991;100:63–9.PubMedCrossRef Liss GM, Tarlo SM. Peak expiratory flow rates in possible occupational asthma. Chest. 1991;100:63–9.PubMedCrossRef
47.
go back to reference Gannon PF, Newton DT, Belcher J, et al. Development of OASYS-2: a system for the analysis of serial measurement of peak expiratory flow in workers with suspected occupational asthma. Thorax. 1996;51:484–9.PubMedCrossRef Gannon PF, Newton DT, Belcher J, et al. Development of OASYS-2: a system for the analysis of serial measurement of peak expiratory flow in workers with suspected occupational asthma. Thorax. 1996;51:484–9.PubMedCrossRef
48.
go back to reference Baldwin DR, Gannon P, Bright P, et al. Interpretation of occupational peak flow records: level of agreement between expert clinicians and Oasys-2. Thorax. 2002;57:860–4.PubMedCrossRef Baldwin DR, Gannon P, Bright P, et al. Interpretation of occupational peak flow records: level of agreement between expert clinicians and Oasys-2. Thorax. 2002;57:860–4.PubMedCrossRef
49.
go back to reference Moore VC, Jaakkola MS, Burge CBSG, Robertson AS, Pantin CF, Vellore AD, et al. A new diagnostic score for occupational asthma. Chest. 2009;135:307–14.PubMedCrossRef Moore VC, Jaakkola MS, Burge CBSG, Robertson AS, Pantin CF, Vellore AD, et al. A new diagnostic score for occupational asthma. Chest. 2009;135:307–14.PubMedCrossRef
50.
go back to reference Anees W, Gannon PF, Huggins V, et al. Effect of peak expiratory flow data quantity on diagnostic sensitivity and specificity in occupational asthma. Eur Respir J. 2004;23:730–4.PubMedCrossRef Anees W, Gannon PF, Huggins V, et al. Effect of peak expiratory flow data quantity on diagnostic sensitivity and specificity in occupational asthma. Eur Respir J. 2004;23:730–4.PubMedCrossRef
51.
go back to reference Stenton SC, Avery AJ, Walters EH, et al. Statistical approaches to the identification of late asthmatic reactions. Eur Respir J. 1994;7:806–12.PubMedCrossRef Stenton SC, Avery AJ, Walters EH, et al. Statistical approaches to the identification of late asthmatic reactions. Eur Respir J. 1994;7:806–12.PubMedCrossRef
52.
go back to reference Burge CB, Moore VC, Pantin CF, Robertson AS, Burge PS. Diagnosis of occupational asthma from time point differences in serial PEF measurements. Thorax. 2009;64(12):1032–6.PubMedCrossRef Burge CB, Moore VC, Pantin CF, Robertson AS, Burge PS. Diagnosis of occupational asthma from time point differences in serial PEF measurements. Thorax. 2009;64(12):1032–6.PubMedCrossRef
53.•
go back to reference Anees W, Blainey D, Moore VC, Robertson K, Burge PS. Differentiating occupational asthmatics from non-occupational asthmatics and irritant-exposed workers. Occupational Medicine. 2011;61:190–5. The authors studied different PEF variability indices in order to find a simple index for differentiating subjects with OA from those with non-OA or irritant-exposed healthy subjects..PubMedCrossRef Anees W, Blainey D, Moore VC, Robertson K, Burge PS. Differentiating occupational asthmatics from non-occupational asthmatics and irritant-exposed workers. Occupational Medicine. 2011;61:190–5. The authors studied different PEF variability indices in order to find a simple index for differentiating subjects with OA from those with non-OA or irritant-exposed healthy subjects..PubMedCrossRef
54.
go back to reference Crapo RO, Casaburi R, Coates AL, et al. Guidelines for methacholine and exercise challenge testing-1999: this official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 2000;161:309–29.PubMed Crapo RO, Casaburi R, Coates AL, et al. Guidelines for methacholine and exercise challenge testing-1999: this official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 2000;161:309–29.PubMed
55.
go back to reference Chan-Yeung M, Malo JL, Tarlo SM, et al. Proceedings of the first Jack Pepys Occupational Asthma Symposium. Am J Respir Crit Care Med. 2003;167:450–71.PubMedCrossRef Chan-Yeung M, Malo JL, Tarlo SM, et al. Proceedings of the first Jack Pepys Occupational Asthma Symposium. Am J Respir Crit Care Med. 2003;167:450–71.PubMedCrossRef
56.
go back to reference Empey DW, Laitinen LA, Jacobs L, et al. Mechanisms of bronchial hyperreactivity in normal subjects after upper respiratory tract infection. Am Rev Respir Dis. 1976;113:131–9.PubMed Empey DW, Laitinen LA, Jacobs L, et al. Mechanisms of bronchial hyperreactivity in normal subjects after upper respiratory tract infection. Am Rev Respir Dis. 1976;113:131–9.PubMed
57.
go back to reference Currie GP, Fowler SJ, Lipworth BJ. Dose response of inhaled corticosteroids on bronchial hyperresponsiveness: a meta-analysis. Ann Allergy Asthma Immunol. 2003;90:194–8.PubMedCrossRef Currie GP, Fowler SJ, Lipworth BJ. Dose response of inhaled corticosteroids on bronchial hyperresponsiveness: a meta-analysis. Ann Allergy Asthma Immunol. 2003;90:194–8.PubMedCrossRef
58.
go back to reference Bagnato GF, Gulli S, Giacobbe O, et al. Bronchial hyperresponsiveness in subjects with gastroesophageal reflux. Respiration. 2000;67:507–9.PubMedCrossRef Bagnato GF, Gulli S, Giacobbe O, et al. Bronchial hyperresponsiveness in subjects with gastroesophageal reflux. Respiration. 2000;67:507–9.PubMedCrossRef
59.
go back to reference Cote J, Kennedy S, Chan-Yeung M. Sensitivity and specificity of PC20 and peak expiratory flow rate in cedar asthma. J Allergy Clin Immunol. 1990;85:592–8.PubMedCrossRef Cote J, Kennedy S, Chan-Yeung M. Sensitivity and specificity of PC20 and peak expiratory flow rate in cedar asthma. J Allergy Clin Immunol. 1990;85:592–8.PubMedCrossRef
60.
go back to reference Wiszniewska M, Nowakowska-Swirta E, Palczynski C, Walusiak-Skorupa J. Diagnosing of bakers’ respiratory allergy: is specific inhalation challenge test essential? Allergy Asthma Proc. 2011;32(2):111–8.PubMedCrossRef Wiszniewska M, Nowakowska-Swirta E, Palczynski C, Walusiak-Skorupa J. Diagnosing of bakers’ respiratory allergy: is specific inhalation challenge test essential? Allergy Asthma Proc. 2011;32(2):111–8.PubMedCrossRef
61.
go back to reference Malo JL, Cardinal S, Ghezzo H, L’archeveque J, Castellanos L, Maghni K. Association of bronchial reactivity to occupational agents with methacholine reactivity, sputum cells and immunoglobulin E-mediated reactivity. Clin Exp Allergy. 2011;41:497–504.PubMedCrossRef Malo JL, Cardinal S, Ghezzo H, L’archeveque J, Castellanos L, Maghni K. Association of bronchial reactivity to occupational agents with methacholine reactivity, sputum cells and immunoglobulin E-mediated reactivity. Clin Exp Allergy. 2011;41:497–504.PubMedCrossRef
62.
63.
go back to reference Vandenplas O, Binard-Van Cangh F, Brumagne A, et al. Occupational asthma in symptomatic workers exposed to natural rubber latex: evaluation of diagnostic procedures. J Allergy Clin Immunol. 2001;107:542–7.PubMedCrossRef Vandenplas O, Binard-Van Cangh F, Brumagne A, et al. Occupational asthma in symptomatic workers exposed to natural rubber latex: evaluation of diagnostic procedures. J Allergy Clin Immunol. 2001;107:542–7.PubMedCrossRef
64.
go back to reference Beach J, Russell K, Blitz S, et al. A systematic review of the diagnosis of occupational asthma. Chest. 2007;131:569–78.PubMedCrossRef Beach J, Russell K, Blitz S, et al. A systematic review of the diagnosis of occupational asthma. Chest. 2007;131:569–78.PubMedCrossRef
65.
go back to reference Merget R, Stollfuss J, Wiewrodt R, et al. Diagnostic tests in enzyme allergy. J Allergy Clin Immunol. 1993;92:264–77.PubMedCrossRef Merget R, Stollfuss J, Wiewrodt R, et al. Diagnostic tests in enzyme allergy. J Allergy Clin Immunol. 1993;92:264–77.PubMedCrossRef
66.
go back to reference Brant A, Zekveld C, Welch J, et al. The prognosis of occupational asthma due to detergent enzymes: clinical, immunological and employment outcomes. Clin Exp Allergy. 2006;36:483–8.PubMedCrossRef Brant A, Zekveld C, Welch J, et al. The prognosis of occupational asthma due to detergent enzymes: clinical, immunological and employment outcomes. Clin Exp Allergy. 2006;36:483–8.PubMedCrossRef
67.
go back to reference Baur X, Czuppon A. Diagnostic validation of specific IgE antibody concentrations, skin prick testing, and challenge tests in chemical workers with symptoms of sensitivity to different anhydrides. J Allergy Clin Immunol. 1995;96:489–94.PubMedCrossRef Baur X, Czuppon A. Diagnostic validation of specific IgE antibody concentrations, skin prick testing, and challenge tests in chemical workers with symptoms of sensitivity to different anhydrides. J Allergy Clin Immunol. 1995;96:489–94.PubMedCrossRef
68.
go back to reference Park JW, Kim CW, Kim KS, et al. Role of skin prick test and serological measurement of specific IgE in the diagnosis of occupational asthma resulting from exposure to vinyl sulphone reactive dyes. Occup Environ Med. 2001;58:411–6.PubMedCrossRef Park JW, Kim CW, Kim KS, et al. Role of skin prick test and serological measurement of specific IgE in the diagnosis of occupational asthma resulting from exposure to vinyl sulphone reactive dyes. Occup Environ Med. 2001;58:411–6.PubMedCrossRef
69.
go back to reference Ott MG, Jolly AT, Burkert AL, Brown WE. Issues in diisocyanate antibody testing. Crit Rev Toxicol. 2007;37(7):567–85.PubMedCrossRef Ott MG, Jolly AT, Burkert AL, Brown WE. Issues in diisocyanate antibody testing. Crit Rev Toxicol. 2007;37(7):567–85.PubMedCrossRef
70.
go back to reference Dragos M, Jones M, Malo JL, Ghezzo H, Gautrin D. Specific antibodies to diisocyanate and work-related respiratory symptoms in apprentice car-painters. Occup Environ Med. 2009;66(4):227–34.PubMedCrossRef Dragos M, Jones M, Malo JL, Ghezzo H, Gautrin D. Specific antibodies to diisocyanate and work-related respiratory symptoms in apprentice car-painters. Occup Environ Med. 2009;66(4):227–34.PubMedCrossRef
71.
go back to reference Bernstein DI, Cartier A, Cote J, et al. Diisocyanate antigen stimulated monocyte chemoattractant protein-1 synthesis has greater test efficiency than specific antibodies for identification of diisocyanate asthma. Am J Respir Crit Care Med. 2002;166:445–50.PubMedCrossRef Bernstein DI, Cartier A, Cote J, et al. Diisocyanate antigen stimulated monocyte chemoattractant protein-1 synthesis has greater test efficiency than specific antibodies for identification of diisocyanate asthma. Am J Respir Crit Care Med. 2002;166:445–50.PubMedCrossRef
72.
go back to reference Kim JH, Kim JE, Choi GS, Kim HY, Ye YM, Park HS. Serum cytokines markers in toluene diisocyanate-induced asthma. Respir Med. 2011;105:1091–4.PubMedCrossRef Kim JH, Kim JE, Choi GS, Kim HY, Ye YM, Park HS. Serum cytokines markers in toluene diisocyanate-induced asthma. Respir Med. 2011;105:1091–4.PubMedCrossRef
74.
go back to reference Lemière C, D’Alpaos V, Chaboillez S, César M, Wattiez M, Chiry S, et al. Investigation of occupational asthma sputum cell counts or exhaled nitric oxide? Chest. 2010;137(3):617–22.PubMedCrossRef Lemière C, D’Alpaos V, Chaboillez S, César M, Wattiez M, Chiry S, et al. Investigation of occupational asthma sputum cell counts or exhaled nitric oxide? Chest. 2010;137(3):617–22.PubMedCrossRef
75.
go back to reference Caron S, Boileau JC, Malo JL, Leblond S. New methodology for specific inhalation challenges with occupational agents. Respir Res. 2010;11:72.PubMedCrossRef Caron S, Boileau JC, Malo JL, Leblond S. New methodology for specific inhalation challenges with occupational agents. Respir Res. 2010;11:72.PubMedCrossRef
76.
go back to reference Talini D, Novelli F, Bacci E, Dente FL, De Santis M, Di Franco A, et al. Comparison between Airway Responses to High versus Low Molecular Weight Compounds in Occupational Asthma. J Allergy (Cairo). 2011;2011:781470. Talini D, Novelli F, Bacci E, Dente FL, De Santis M, Di Franco A, et al. Comparison between Airway Responses to High versus Low Molecular Weight Compounds in Occupational Asthma. J Allergy (Cairo). 2011;2011:781470.
77.
go back to reference Dufour MH, Lemière C, Prince P, Boulet LP. Comparative airway response to high versus low-molecular weight agents in occupational asthma. Eur Respir J. 2009;33:734–9.PubMedCrossRef Dufour MH, Lemière C, Prince P, Boulet LP. Comparative airway response to high versus low-molecular weight agents in occupational asthma. Eur Respir J. 2009;33:734–9.PubMedCrossRef
78.
go back to reference Rioux JP, Malo JL, L’Archevêque J, Rabhi K, Labrecque M. Workplace-specific challenges as a contribution to the diagnosis of occupational asthma. Eur Respir J. 2008;32(4):997–1003.PubMedCrossRef Rioux JP, Malo JL, L’Archevêque J, Rabhi K, Labrecque M. Workplace-specific challenges as a contribution to the diagnosis of occupational asthma. Eur Respir J. 2008;32(4):997–1003.PubMedCrossRef
79.
go back to reference Obata H, Dittrick M, Chan H, Chan-Yeung M. Sputum eosinophils and exhaled nitric oxide during late asthmatic reaction in patients with western red cedar asthma. Eur Respir J. 1999;13(3):477–8.CrossRef Obata H, Dittrick M, Chan H, Chan-Yeung M. Sputum eosinophils and exhaled nitric oxide during late asthmatic reaction in patients with western red cedar asthma. Eur Respir J. 1999;13(3):477–8.CrossRef
80.
go back to reference Lemiere C, Chaboillez S, Malo JL, Cartier A. Changes in sputum cell counts after exposure to occupational agents: what do they mean? J Allergy Clin Immunol. 2001;107:1063–8.PubMedCrossRef Lemiere C, Chaboillez S, Malo JL, Cartier A. Changes in sputum cell counts after exposure to occupational agents: what do they mean? J Allergy Clin Immunol. 2001;107:1063–8.PubMedCrossRef
81.
go back to reference Lemiere C, Chaboilliez S, Trudeau C, et al. Characterization of airway inflammation after repeated exposures to occupational agents. J Allergy Clin Immunol. 2000;106:1163–70.PubMedCrossRef Lemiere C, Chaboilliez S, Trudeau C, et al. Characterization of airway inflammation after repeated exposures to occupational agents. J Allergy Clin Immunol. 2000;106:1163–70.PubMedCrossRef
82.
go back to reference Girard F, Chaboillez S, Cartier A, et al. An effective strategy for diagnosing occupational asthma: use of induced sputum. Am J Respir Crit Care Med. 2004;170:845–50.PubMedCrossRef Girard F, Chaboillez S, Cartier A, et al. An effective strategy for diagnosing occupational asthma: use of induced sputum. Am J Respir Crit Care Med. 2004;170:845–50.PubMedCrossRef
83.
go back to reference Kennedy WA, Girard F, Chaboillez S, Cartier A, Côté J, Hargreave F, et al. Cost-effectiveness of various diagnostic approaches for occupational asthma. Can Respir J. 2007;14(5):276–80.PubMed Kennedy WA, Girard F, Chaboillez S, Cartier A, Côté J, Hargreave F, et al. Cost-effectiveness of various diagnostic approaches for occupational asthma. Can Respir J. 2007;14(5):276–80.PubMed
84.
go back to reference Allmers H, Chen Z, Barbinova L, et al. Challenge from methacholine, natural rubber latex, or 4,4-diphenylmethane diisocyanate in workers with suspected sensitization affects exhaled nitric oxide [change in exhaled NO levels after allergen challenges. Int Arch Occup Environ Health. 2000;73:181–6.PubMedCrossRef Allmers H, Chen Z, Barbinova L, et al. Challenge from methacholine, natural rubber latex, or 4,4-diphenylmethane diisocyanate in workers with suspected sensitization affects exhaled nitric oxide [change in exhaled NO levels after allergen challenges. Int Arch Occup Environ Health. 2000;73:181–6.PubMedCrossRef
85.
go back to reference Baur X, Barbinova L. Latex allergen exposure increases exhaled nitric oxide in symptomatic healthcare workers. Eur Respir J. 2005;25:309–16.PubMedCrossRef Baur X, Barbinova L. Latex allergen exposure increases exhaled nitric oxide in symptomatic healthcare workers. Eur Respir J. 2005;25:309–16.PubMedCrossRef
86.
go back to reference Barbinova L, Baur X. Increase in exhaled nitric oxide (eNO) after work-related isocyanate exposure. Int Arch Occup Environ Health. 2006;79:387–95.PubMedCrossRef Barbinova L, Baur X. Increase in exhaled nitric oxide (eNO) after work-related isocyanate exposure. Int Arch Occup Environ Health. 2006;79:387–95.PubMedCrossRef
87.
go back to reference Swierczyńska-Machura D, Krakowiak A, Wiszniewska M, Dudek W, Walusiak J, Pałczyński C. Exhaled nitric oxide levels after specific inahalatory challenge test in subjects with diagnosed occupational asthma. Int J Occup Med Environ Health. 2008;21(3):219–25.PubMedCrossRef Swierczyńska-Machura D, Krakowiak A, Wiszniewska M, Dudek W, Walusiak J, Pałczyński C. Exhaled nitric oxide levels after specific inahalatory challenge test in subjects with diagnosed occupational asthma. Int J Occup Med Environ Health. 2008;21(3):219–25.PubMedCrossRef
88.
go back to reference Piipari R, Piirila P, Keskinen H, et al. Exhaled nitric oxide in specific challenge tests to assess occupational asthma. Eur Respir J. 2002;20:1532–7.PubMedCrossRef Piipari R, Piirila P, Keskinen H, et al. Exhaled nitric oxide in specific challenge tests to assess occupational asthma. Eur Respir J. 2002;20:1532–7.PubMedCrossRef
89.
go back to reference Tossa P, Paris C, ZmirouNavier D, Demange V, Acouetey DS, Michaely JP, et al. Increase in exhaled nitric oxide is associated with bronchial hyperresponsiveness among apprentices. Am J Respir Crit Care Med. 2010;182:738–44.PubMedCrossRef Tossa P, Paris C, ZmirouNavier D, Demange V, Acouetey DS, Michaely JP, et al. Increase in exhaled nitric oxide is associated with bronchial hyperresponsiveness among apprentices. Am J Respir Crit Care Med. 2010;182:738–44.PubMedCrossRef
90.
go back to reference Pedrosa M, Barranco P, López-Carrasco V, Quirce S. Changes in exhaled nitric oxide levels after bronchial allergen challenge. Lung. 2012 Jan 7. [Epub ahead of print]. Pedrosa M, Barranco P, López-Carrasco V, Quirce S. Changes in exhaled nitric oxide levels after bronchial allergen challenge. Lung. 2012 Jan 7. [Epub ahead of print].
91.
go back to reference Ferrazzoni S, Scarpa MC, Guarnieri G, Corradi M, Mutti A, Maestrelli P. Exhaled nitric oxide and breath condensate ph in asthmatic reactions induced by isocyanates. Chest. 2009;136(1):155–62.PubMedCrossRef Ferrazzoni S, Scarpa MC, Guarnieri G, Corradi M, Mutti A, Maestrelli P. Exhaled nitric oxide and breath condensate ph in asthmatic reactions induced by isocyanates. Chest. 2009;136(1):155–62.PubMedCrossRef
92.
go back to reference Nicholson PJ, Cullinan P, Newman Taylor AJ, et al. Evidence based guidelines for the prevention, identification, and management of occupational asthma. Occup Environ Med. 2005;62:290–9.PubMedCrossRef Nicholson PJ, Cullinan P, Newman Taylor AJ, et al. Evidence based guidelines for the prevention, identification, and management of occupational asthma. Occup Environ Med. 2005;62:290–9.PubMedCrossRef
93.
go back to reference Fishwick D, Barber CM, Bradshaw LM, British Thoracic Society Standards of Care Subcommittee Guidelines on Occupational Asthma, et al. Standards of care for occupational asthma. Thorax. 2008;63:240–50.PubMedCrossRef Fishwick D, Barber CM, Bradshaw LM, British Thoracic Society Standards of Care Subcommittee Guidelines on Occupational Asthma, et al. Standards of care for occupational asthma. Thorax. 2008;63:240–50.PubMedCrossRef
Metadata
Title
Diagnosis of Occupational Asthma: An Update
Authors
Edgardo J. Jares
Carlos E. Baena-Cagnani
R. Maximiliano Gómez
Publication date
01-06-2012
Publisher
Current Science Inc.
Published in
Current Allergy and Asthma Reports / Issue 3/2012
Print ISSN: 1529-7322
Electronic ISSN: 1534-6315
DOI
https://doi.org/10.1007/s11882-012-0259-2

Other articles of this Issue 3/2012

Current Allergy and Asthma Reports 3/2012 Go to the issue

ASTHMA (WJ CALHOUN AND J BOUSQUET, SECTION EDITORS)

Relevance of Birth Cohorts to Assessment of Asthma Persistence

ASTHMA (WJ CALHOUN AND J BOUSQUET, SECTION EDITORS)

Nutrition and Asthma

ALLERGIC AND IMMUNOLOGIC DISORDERS OF THE EYE AND NERVOUS SYSTEM (CH KATELARIS, SECTION EDITOR)

Diagnostics and New Developments in the Treatment of Ocular Allergies

ALLERGIC AND IMMUNOLOGIC DISORDERS OF THE EYE AND NERVOUS SYSTEM (CH KATELARIS, SECTION EDITOR)

Treatment Update in Multiple Sclerosis