Skip to main content
Top
Published in: Journal of Cancer Survivorship 2/2015

01-06-2015

Effect of low-level laser therapy on pain and swelling in women with breast cancer-related lymphedema: a systematic review and meta-analysis

Authors: Betty Smoot, Laura Chiavola-Larson, Jeannette Lee, Hidelisa Manibusan, Diane D. Allen

Published in: Journal of Cancer Survivorship | Issue 2/2015

Login to get access

Abstract

Purpose

This study aims to examine literature on effectiveness of low-level laser therapy (LLLT) in reducing limb volume and pain in adults with breast cancer-related lymphedema (BCRL).

Methods

PubMed, PEDro, CINAHL, and Cochrane databases were searched using (lymphedema OR edema OR swelling) AND (breast cancer OR mastectomy) AND (laser OR low-level laser therapy OR LLLT OR cold laser). Intervention studies or meta-analyses reporting LLLT for BCRL were included in the search. Pooled effect sizes (ES) and 95 % confidence intervals (CI) were calculated for volume and pain. No limitations were placed on length of follow-up, publication year, or language. Final search was conducted on October 16, 2014.

Results

Nine studies met criteria for inclusion. Within-group pooled ES for volume (six studies) was −0.52 (−0.78, −0.25), representing a 75.7-ml reduction in limb volume after LLLT. Between-group pooled ES for volume (four studies) was −0.62 (−0.97, −0.28), representing a 90.9-ml greater reduction in volume with treatment including LLLT versus not including LLLT. Within-group pooled ES for pain reduction (three studies) was −0.62 (−1.06, −0.19), pain reduction of 13.5 mm (0–100 mm VAS). Between-group pooled ES for pain reduction (two studies) was non-significant at −1.21 (−4.51, 2.10).

Conclusion

Moderate-strength evidence supports LLLT in the management of BCRL, with clinically relevant within-group reductions in volume and pain immediately after conclusion of LLLT treatments. Greater reductions in volume were found with the use of LLLT than in treatments without it.

Implications for Cancer Survivors

LLLT confers clinically meaningful reductions in arm volume and pain in women with BCRL.
Appendix
Available only for authorised users
Literature
1.
go back to reference DiSipio T, Rye S, Newman B, Hayes S. Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis. Lancet Oncol. 2013;14(6):500–15.CrossRefPubMed DiSipio T, Rye S, Newman B, Hayes S. Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis. Lancet Oncol. 2013;14(6):500–15.CrossRefPubMed
2.
go back to reference Smoot B, Wong J, Cooper B, Wanek L, Topp K, Byl N, et al. Upper extremity impairments in women with or without lymphedema following breast cancer treatment. J Cancer Surviv. 2010;4(2):167–78.PubMedCentralCrossRefPubMed Smoot B, Wong J, Cooper B, Wanek L, Topp K, Byl N, et al. Upper extremity impairments in women with or without lymphedema following breast cancer treatment. J Cancer Surviv. 2010;4(2):167–78.PubMedCentralCrossRefPubMed
3.
go back to reference Dawes DJ, Meterissian S, Goldberg M, Mayo NE. Impact of lymphoedema on arm function and health-related quality of life in women following breast cancer surgery. J Rehabil Med. 2008;40(8):651–8.CrossRefPubMed Dawes DJ, Meterissian S, Goldberg M, Mayo NE. Impact of lymphoedema on arm function and health-related quality of life in women following breast cancer surgery. J Rehabil Med. 2008;40(8):651–8.CrossRefPubMed
4.
go back to reference Hayes SC, Johansson K, Stout NL, Prosnitz R, Armer JM, Gabram S, et al. Upper-body morbidity after breast cancer: incidence and evidence for evaluation, prevention, and management within a prospective surveillance model of care. Cancer. 2012;118(8 Suppl):2237–49.CrossRefPubMed Hayes SC, Johansson K, Stout NL, Prosnitz R, Armer JM, Gabram S, et al. Upper-body morbidity after breast cancer: incidence and evidence for evaluation, prevention, and management within a prospective surveillance model of care. Cancer. 2012;118(8 Suppl):2237–49.CrossRefPubMed
5.
go back to reference Ridner SH. Quality of life and a symptom cluster associated with breast cancer treatment-related lymphedema. Support Care Cancer. 2005;13(11):904–11.CrossRefPubMed Ridner SH. Quality of life and a symptom cluster associated with breast cancer treatment-related lymphedema. Support Care Cancer. 2005;13(11):904–11.CrossRefPubMed
6.
go back to reference Maiya A, Olivia E, Dibya A. Effect of low energy laser therapy in the management of post-mastectomy lymphoedema. Physiother Sing. 2008;11:2–5. Maiya A, Olivia E, Dibya A. Effect of low energy laser therapy in the management of post-mastectomy lymphoedema. Physiother Sing. 2008;11:2–5.
7.
go back to reference Hwang JM, Hwang JH, Kim TW, Lee SY, Chang HJ, Chu IH. Long-term effects of complex decongestive therapy in breast cancer patients with arm lymphedema after axillary dissection. Ann Rehabil Med. 2013;37:690–7.PubMedCentralCrossRefPubMed Hwang JM, Hwang JH, Kim TW, Lee SY, Chang HJ, Chu IH. Long-term effects of complex decongestive therapy in breast cancer patients with arm lymphedema after axillary dissection. Ann Rehabil Med. 2013;37:690–7.PubMedCentralCrossRefPubMed
8.
go back to reference Huang TW, Tseng SH, Lin CC, Bai CH, Chen CS, Hung CS, et al. Effects of manual lymphatic drainage on breast cancer-related lymphedema: a systematic review and meta-analysis of randomized controlled trials. World J Surg Oncol. 2013;11:15.PubMedCentralCrossRefPubMed Huang TW, Tseng SH, Lin CC, Bai CH, Chen CS, Hung CS, et al. Effects of manual lymphatic drainage on breast cancer-related lymphedema: a systematic review and meta-analysis of randomized controlled trials. World J Surg Oncol. 2013;11:15.PubMedCentralCrossRefPubMed
9.
go back to reference Stout NL, Pfalzer LA, Springer B, Levy E, McGarvey CL, Danoff JV, et al. Breast cancer-related lymphedema: comparing direct costs of a prospective surveillance model and a traditional model of care. Phys Ther. 2012;92(1):152–63.PubMedCentralCrossRefPubMed Stout NL, Pfalzer LA, Springer B, Levy E, McGarvey CL, Danoff JV, et al. Breast cancer-related lymphedema: comparing direct costs of a prospective surveillance model and a traditional model of care. Phys Ther. 2012;92(1):152–63.PubMedCentralCrossRefPubMed
10.
go back to reference Thiel H. Low power laser therapy—an introduction and a review of some biological effects. J Can Chiropr Assoc. 1986;30(3):133–8.PubMedCentral Thiel H. Low power laser therapy—an introduction and a review of some biological effects. J Can Chiropr Assoc. 1986;30(3):133–8.PubMedCentral
11.
go back to reference Cameron M. Electromagnetic radiation: lasers and light. In: Cameron MH, editor. Physical agents in rehabilitation: from research to practice. 3rd ed. St. Louis: Saunders; 2009. Cameron M. Electromagnetic radiation: lasers and light. In: Cameron MH, editor. Physical agents in rehabilitation: from research to practice. 3rd ed. St. Louis: Saunders; 2009.
12.
go back to reference Lievens P. The influence of laser-irradiation on the motricity of the lymphatical system and on the wound healing process. In: Proceedings International Congress on Laser in Medicine and Surgery, Bologna, June 26–28, 1985. Monduzzi. 1985:171–4. Lievens P. The influence of laser-irradiation on the motricity of the lymphatical system and on the wound healing process. In: Proceedings International Congress on Laser in Medicine and Surgery, Bologna, June 26–28, 1985. Monduzzi. 1985:171–4.
13.
go back to reference Lievens P. The effect of a combined HeNe and IR laser treatment on the regeneration of the lymphatic system during the process of wound healing. Lasers Med Sci. 1991;6(2):193–9.CrossRef Lievens P. The effect of a combined HeNe and IR laser treatment on the regeneration of the lymphatic system during the process of wound healing. Lasers Med Sci. 1991;6(2):193–9.CrossRef
14.
go back to reference Assis L, Moretti AI, Abrahao TB, de Souza HP, Hamblin MR, Parizotto NA. Low-level laser therapy (808nm) contributes to muscle regeneration and prevents fibrosis in rat tibialis anterior muscle after cryolesion. Lasers Med Sci. 2013;28(3):947–55.PubMedCentralCrossRefPubMed Assis L, Moretti AI, Abrahao TB, de Souza HP, Hamblin MR, Parizotto NA. Low-level laser therapy (808nm) contributes to muscle regeneration and prevents fibrosis in rat tibialis anterior muscle after cryolesion. Lasers Med Sci. 2013;28(3):947–55.PubMedCentralCrossRefPubMed
15.
go back to reference Omar MT, Shaheen AA, Zafar H. A systematic review of the effect of low-level laser therapy in the management of breast cancer-related lymphedema. Support Care Cancer. 2012;20(11):2977–84.CrossRefPubMed Omar MT, Shaheen AA, Zafar H. A systematic review of the effect of low-level laser therapy in the management of breast cancer-related lymphedema. Support Care Cancer. 2012;20(11):2977–84.CrossRefPubMed
16.
go back to reference Lima ME, Lima J, de Andrade M, Bergmann A. Low-level laser therapy in secondary lymphedema after breast cancer: systematic review. Lasers Med Sci. 2014;29:1289–95.CrossRef Lima ME, Lima J, de Andrade M, Bergmann A. Low-level laser therapy in secondary lymphedema after breast cancer: systematic review. Lasers Med Sci. 2014;29:1289–95.CrossRef
17.
go back to reference Moseley AL, Carati CJ, Piller NB. A systematic review of common conservative therapies for arm lymphoedema secondary to breast cancer treatment. Ann Oncol. 2007;18(4):639–46.CrossRefPubMed Moseley AL, Carati CJ, Piller NB. A systematic review of common conservative therapies for arm lymphoedema secondary to breast cancer treatment. Ann Oncol. 2007;18(4):639–46.CrossRefPubMed
18.
go back to reference Flórez-García MT, Valverde-Carrillo MD. Effectiveness of nonpharmacological interventions in the management of lymphedema postmastectomy. Rehabilitacion. 2007;41(3):126–34.CrossRef Flórez-García MT, Valverde-Carrillo MD. Effectiveness of nonpharmacological interventions in the management of lymphedema postmastectomy. Rehabilitacion. 2007;41(3):126–34.CrossRef
19.
go back to reference Ridner SH, Poage-Hooper E, Kanar C, Doesram JK, Bond SM, Dietrich MS. A pilot randomized trial evaluating low-level laser therapy as an alternative treatment to manual lymphatic drainage for breast cancer-related lymphedema. Oncol Nurs Forum. 2013;40:383–93.CrossRefPubMed Ridner SH, Poage-Hooper E, Kanar C, Doesram JK, Bond SM, Dietrich MS. A pilot randomized trial evaluating low-level laser therapy as an alternative treatment to manual lymphatic drainage for breast cancer-related lymphedema. Oncol Nurs Forum. 2013;40:383–93.CrossRefPubMed
20.
go back to reference Piller N, Thelander A. Treating chronic postmastectomy lymphedema with low level laser therapy: a cost effective strategy to reduce severity and improve quality of survival. Laser Ther. 1995;7(23):163–8.CrossRef Piller N, Thelander A. Treating chronic postmastectomy lymphedema with low level laser therapy: a cost effective strategy to reduce severity and improve quality of survival. Laser Ther. 1995;7(23):163–8.CrossRef
21.
go back to reference Piller NB, Thelander A. Treatment of chronic postmastectomy lymphedema with low level laser therapy: a 2.5 year follow-up. Lymphology. 1998;31(2):74–86.PubMed Piller NB, Thelander A. Treatment of chronic postmastectomy lymphedema with low level laser therapy: a 2.5 year follow-up. Lymphology. 1998;31(2):74–86.PubMed
22.
go back to reference Carati CJ, Anderson SN, Gannon BJ, Piller NB. Treatment of postmastectomy lymphedema with low-level laser therapy: a double blind, placebo-controlled trial. Cancer. 2003;98(6):1114–22.CrossRefPubMed Carati CJ, Anderson SN, Gannon BJ, Piller NB. Treatment of postmastectomy lymphedema with low-level laser therapy: a double blind, placebo-controlled trial. Cancer. 2003;98(6):1114–22.CrossRefPubMed
23.
go back to reference Dirican A, Andacoglu O, Johnson R, McGuire K, Mager L, Soran A. The short-term effects of low-level laser therapy in the management of breast-cancer-related lymphedema. Support Care Cancer. 2011;19(5):685–90.CrossRefPubMed Dirican A, Andacoglu O, Johnson R, McGuire K, Mager L, Soran A. The short-term effects of low-level laser therapy in the management of breast-cancer-related lymphedema. Support Care Cancer. 2011;19(5):685–90.CrossRefPubMed
24.
go back to reference Kaviani A, Fateh M, Yousefi Nooraie R, Alinagi-zadeh MR, Ataie-Fashtami L. Low-level laser therapy in management of postmastectomy lymphedema. Lasers Med Sci. 2006;21(2):90–4.CrossRefPubMed Kaviani A, Fateh M, Yousefi Nooraie R, Alinagi-zadeh MR, Ataie-Fashtami L. Low-level laser therapy in management of postmastectomy lymphedema. Lasers Med Sci. 2006;21(2):90–4.CrossRefPubMed
25.
go back to reference Kozanoglu E, Basaran S, Paydas S, Sarpel T. Efficacy of pneumatic compression and low-level laser therapy in the treatment of postmastectomy lymphoedema: a randomized controlled trial. Clin Rehabil. 2009;23(2):117–24.CrossRefPubMed Kozanoglu E, Basaran S, Paydas S, Sarpel T. Efficacy of pneumatic compression and low-level laser therapy in the treatment of postmastectomy lymphoedema: a randomized controlled trial. Clin Rehabil. 2009;23(2):117–24.CrossRefPubMed
26.
go back to reference Lau RW, Cheing GL. Managing postmastectomy lymphedema with low-level laser therapy. Photomed Laser Surg. 2009;27(5):763–9.CrossRefPubMed Lau RW, Cheing GL. Managing postmastectomy lymphedema with low-level laser therapy. Photomed Laser Surg. 2009;27(5):763–9.CrossRefPubMed
27.
go back to reference Omar M, Abd-El-Gayed Ebid A, El Morsy A. Treatment of post-mastectomy lymphedema with laser therapy: double blind placebo control randomized study. J Surg Res. 2011;165(1):82–90.CrossRef Omar M, Abd-El-Gayed Ebid A, El Morsy A. Treatment of post-mastectomy lymphedema with laser therapy: double blind placebo control randomized study. J Surg Res. 2011;165(1):82–90.CrossRef
28.
go back to reference Bird SB, Dickson EW. Clinically significant changes in pain along the visual analog scale. Ann Emerg Med. 2001;38(6):639–43.CrossRefPubMed Bird SB, Dickson EW. Clinically significant changes in pain along the visual analog scale. Ann Emerg Med. 2001;38(6):639–43.CrossRefPubMed
29.
go back to reference Stubblefield MD, Keole N. Upper body pain and functional disorders in patients with breast cancer. PM R. 2014;6(2):170–83.CrossRefPubMed Stubblefield MD, Keole N. Upper body pain and functional disorders in patients with breast cancer. PM R. 2014;6(2):170–83.CrossRefPubMed
30.
go back to reference Teerachaisakul M, Ekataksin W, Durongwatana S, Taneepanichskul S. Risk factors for cellulitis in patients with lymphedema: a case-controlled study. Lymphology. 2013;46(3):150–6.PubMed Teerachaisakul M, Ekataksin W, Durongwatana S, Taneepanichskul S. Risk factors for cellulitis in patients with lymphedema: a case-controlled study. Lymphology. 2013;46(3):150–6.PubMed
31.
go back to reference de Godoy JMP, da Silva SH. Prevalence of cellulitis and erysipelas in post-mastectomy patients after breast cancer. Arch Med Sci. 2007;3:249–51. de Godoy JMP, da Silva SH. Prevalence of cellulitis and erysipelas in post-mastectomy patients after breast cancer. Arch Med Sci. 2007;3:249–51.
32.
go back to reference Daróczy J. Antiseptic efficacy of local disinfecting povidone iodine (Betadine) therapy in chronic wounds of lymphedematous patients. Dermatology. 2002;204:75–8.PubMed Daróczy J. Antiseptic efficacy of local disinfecting povidone iodine (Betadine) therapy in chronic wounds of lymphedematous patients. Dermatology. 2002;204:75–8.PubMed
33.
go back to reference Tilley S. Use of laser therapy in the management of lymphoedema. J Lymphoedema. 2009;4(1):39–43. Tilley S. Use of laser therapy in the management of lymphoedema. J Lymphoedema. 2009;4(1):39–43.
34.
go back to reference Hawkins D, Abrahamse H. Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg. 2006;24(6):705–14.CrossRefPubMed Hawkins D, Abrahamse H. Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg. 2006;24(6):705–14.CrossRefPubMed
36.
go back to reference OCEBM Levels of Evidence Working Group*. The Oxford levels of evidence 2. Oxford Centre for Evidence-Based Medicine. http://www.cebm.net/index.aspx?o=5653. *OCEBM Levels of Evidence Working Group=Jeremy Howick, Iain Chalmers (James Lind Library), Paul Glasziou, Trish Greenhalgh, Carl Heneghan, Alessandro Liberati, Ivan Moschetti, Bob Phillips, Hazel Thornton, Olive Goddard and Mary Hodgkinson. OCEBM Levels of Evidence Working Group*. The Oxford levels of evidence 2. Oxford Centre for Evidence-Based Medicine. http://​www.​cebm.​net/​index.​aspx?​o=​5653. *OCEBM Levels of Evidence Working Group=Jeremy Howick, Iain Chalmers (James Lind Library), Paul Glasziou, Trish Greenhalgh, Carl Heneghan, Alessandro Liberati, Ivan Moschetti, Bob Phillips, Hazel Thornton, Olive Goddard and Mary Hodgkinson.
37.
go back to reference Cohen J. Statistical power analysis. Curr Dir Psychol Sci. 1992;1(3):98–101.CrossRef Cohen J. Statistical power analysis. Curr Dir Psychol Sci. 1992;1(3):98–101.CrossRef
Metadata
Title
Effect of low-level laser therapy on pain and swelling in women with breast cancer-related lymphedema: a systematic review and meta-analysis
Authors
Betty Smoot
Laura Chiavola-Larson
Jeannette Lee
Hidelisa Manibusan
Diane D. Allen
Publication date
01-06-2015
Publisher
Springer US
Published in
Journal of Cancer Survivorship / Issue 2/2015
Print ISSN: 1932-2259
Electronic ISSN: 1932-2267
DOI
https://doi.org/10.1007/s11764-014-0411-1

Other articles of this Issue 2/2015

Journal of Cancer Survivorship 2/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine