Skip to main content
Top
Published in: General Thoracic and Cardiovascular Surgery 11/2017

01-11-2017 | Current Topics Review Article

New imaging tools in cardiovascular medicine: computational fluid dynamics and 4D flow MRI

Authors: Keiichi Itatani, Shohei Miyazaki, Tokoki Furusawa, Satoshi Numata, Sachiko Yamazaki, Kazuki Morimoto, Rina Makino, Hiroko Morichi, Teruyasu Nishino, Hitoshi Yaku

Published in: General Thoracic and Cardiovascular Surgery | Issue 11/2017

Login to get access

Abstract

Blood flow imaging is a novel technology in cardiovascular medicine and surgery. Today, two types of blood flow imaging tools are available: measurement-based flow visualization including 4D flow MRI (or 3D cine phase-contrast magnetic resonance imaging), or echocardiography flow visualization software, and computer flow simulation modeling based on computational fluid dynamics (CFD). MRI and echocardiography flow visualization provide measured blood flow but have limitations in temporal and spatial resolution, whereas CFD flow calculates the flow according to assumptions instead of flow measurement, and it has sufficiently fine resolution up to the computer memory limit, and it enables even virtual surgery when combined with computer graphics. Blood flow imaging provides profound insight into the pathophysiology of cardiovascular diseases, because it quantifies and visualizes mechanical stress on the vessel walls or heart ventricle. Wall shear stress (WSS) is a stress on the endothelial wall caused by the near wall blood flow, and it is thought to be a predictor of atherosclerosis progression in coronary or aortic diseases. Flow energy loss (EL) is the loss of blood flow energy caused by viscous friction of turbulent diseased flow, and it is expected to be a predictor of ventricular workload on various heart diseases including heart valve disease, cardiomyopathy, and congenital heart diseases. Blood flow imaging can provide useful information for developing predictive medicine in cardiovascular diseases, and may lead to breakthroughs in cardiovascular surgery, especially in the decision-making process.
Literature
1.
go back to reference Itatani K. Advances in hemodynamics research. Nova Science Publisher. 2015. Itatani K. Advances in hemodynamics research. Nova Science Publisher. 2015.
3.
go back to reference Landau LD, Lifshitz EM. Course of theoretical physics. Fluid mechanics. 2nd edn. Butterworth Heinemann: 1987. Landau LD, Lifshitz EM. Course of theoretical physics. Fluid mechanics. 2nd edn. Butterworth Heinemann: 1987.
4.
go back to reference Pedrizzetti G, La Canna G, Alfieri O, Tonti G. The vortex—an early predictor of cardiovascular outcome? Nat Rev Cardiol. 2014;11(9):545–53.CrossRefPubMed Pedrizzetti G, La Canna G, Alfieri O, Tonti G. The vortex—an early predictor of cardiovascular outcome? Nat Rev Cardiol. 2014;11(9):545–53.CrossRefPubMed
5.
go back to reference Whitehead KK, Pekkan K, Kitajima HD, Paridon SM, Yoganathan AP, Fogel MA. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation. 2007;116(11 Suppl):I165-I171. Whitehead KK, Pekkan K, Kitajima HD, Paridon SM, Yoganathan AP, Fogel MA. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation. 2007;116(11 Suppl):I165-I171.
6.
go back to reference Dasi LP, Rema RK, Kitajima HD, Pekkan K, Sundareswaran KS, Fogel M, Sharma S, Whitehead K, Kanter K, Yoganathan AP. Fontan hemodynamics: importance of artery diameter. J Thorac Cardiovasc Surg. 2009;137:560–4.CrossRefPubMedPubMedCentral Dasi LP, Rema RK, Kitajima HD, Pekkan K, Sundareswaran KS, Fogel M, Sharma S, Whitehead K, Kanter K, Yoganathan AP. Fontan hemodynamics: importance of artery diameter. J Thorac Cardiovasc Surg. 2009;137:560–4.CrossRefPubMedPubMedCentral
7.
go back to reference Honda T, Itatani K, Takanashi M, Mineo E, Kitagawa A, Ando H, Kimura S, Nakahata Y, Oka N, Miyaji K, Ishii M. Quantitative evaluation of hemodynamics in the Fontan circulation: a cross-sectional study measuring energy loss in vivo. Pediatr Cardiol. 2014;35(2):361–7.CrossRefPubMed Honda T, Itatani K, Takanashi M, Mineo E, Kitagawa A, Ando H, Kimura S, Nakahata Y, Oka N, Miyaji K, Ishii M. Quantitative evaluation of hemodynamics in the Fontan circulation: a cross-sectional study measuring energy loss in vivo. Pediatr Cardiol. 2014;35(2):361–7.CrossRefPubMed
8.
go back to reference Itatani K, Ono M. Blood flow visualiziong diagnostic device. Patent WO2013077013 A1 PCT/JP2012/063484 2013-05-30. Itatani K, Ono M. Blood flow visualiziong diagnostic device. Patent WO2013077013 A1 PCT/JP2012/063484 2013-05-30.
9.
go back to reference Itatani K, Okada T, Uejima T, Tanaka T, Ono M, Miyaji K, Takenaka K. Intraventricular flow velocity vector visualization based on the continuity equation and measurements of vorticity and wall shear stress. Jpn J Appl Phys. 2013;52:07HF16.CrossRef Itatani K, Okada T, Uejima T, Tanaka T, Ono M, Miyaji K, Takenaka K. Intraventricular flow velocity vector visualization based on the continuity equation and measurements of vorticity and wall shear stress. Jpn J Appl Phys. 2013;52:07HF16.CrossRef
10.
go back to reference Honda T, Itatani K, Miyaji K, Ishii M. Assessment of the vortex flow in the post-stenotic dilatation above the pulmonary valve stenosis in an infant using echocardiography vector flow mapping. Eur Heart J. 2014;35(5):306.CrossRefPubMed Honda T, Itatani K, Miyaji K, Ishii M. Assessment of the vortex flow in the post-stenotic dilatation above the pulmonary valve stenosis in an infant using echocardiography vector flow mapping. Eur Heart J. 2014;35(5):306.CrossRefPubMed
11.
go back to reference Stugaard M, Koriyama H, Katsuki K, Masuda K, Asanuma T, Takeda Y, Sakata Y, Itatani K, Nakatani S. Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity of aortic regurgitation: a combined experimental and clinical study. Eur Heart J Cardiovasc Imaging. 2015;16(7):723–30.CrossRefPubMed Stugaard M, Koriyama H, Katsuki K, Masuda K, Asanuma T, Takeda Y, Sakata Y, Itatani K, Nakatani S. Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity of aortic regurgitation: a combined experimental and clinical study. Eur Heart J Cardiovasc Imaging. 2015;16(7):723–30.CrossRefPubMed
12.
go back to reference Fukuda N, Itatani K, Kimura K, Ebihara A, Negishi K, Uno K, Miyaji K, Kurabayashi M, Takenaka K. An inefficient vortex remains during the ejection period in the left ventricle with a low ejection fraction—a study by vector flow mapping-. J Med Ultrasonic. 2014;41(3):301–10.CrossRef Fukuda N, Itatani K, Kimura K, Ebihara A, Negishi K, Uno K, Miyaji K, Kurabayashi M, Takenaka K. An inefficient vortex remains during the ejection period in the left ventricle with a low ejection fraction—a study by vector flow mapping-. J Med Ultrasonic. 2014;41(3):301–10.CrossRef
13.
go back to reference Nabeta T, Itatani K, Miyaji K, Ako J. Vortex flow energy loss reflects therapeutic effect in dilated cardiomyopathy. Eur Heart J. 2015;36(11):637.CrossRefPubMed Nabeta T, Itatani K, Miyaji K, Ako J. Vortex flow energy loss reflects therapeutic effect in dilated cardiomyopathy. Eur Heart J. 2015;36(11):637.CrossRefPubMed
14.
go back to reference Hwang J, Saha A, Boo YC, Sorescu GP, McNally JS, Holland SM, Dikalov S, Giddens DP, Griendling KK, Harrison DG, Jo H. Oscillatory shear stress stimulates endothelial production of O2—from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion. J Biol Chem. 2003;278(47):47291–8.CrossRefPubMed Hwang J, Saha A, Boo YC, Sorescu GP, McNally JS, Holland SM, Dikalov S, Giddens DP, Griendling KK, Harrison DG, Jo H. Oscillatory shear stress stimulates endothelial production of O2—from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion. J Biol Chem. 2003;278(47):47291–8.CrossRefPubMed
15.
go back to reference Fukumoto Y, Hiro T, Fujii T, Hashimoto G, Fujimura T, Yamada J, Okamura T, Matsuzaki M. Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in-vivo color mapping of shear stress distribution. J Am Coll Cardiol. 2008;51(6):645–50.CrossRefPubMed Fukumoto Y, Hiro T, Fujii T, Hashimoto G, Fujimura T, Yamada J, Okamura T, Matsuzaki M. Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in-vivo color mapping of shear stress distribution. J Am Coll Cardiol. 2008;51(6):645–50.CrossRefPubMed
16.
go back to reference Chatzizisis YS, Jonas M, Coskun AU, Beigel R, Stone BV, Maynard C, Gerrity RG, Daley W, Rogers C, Edelman ER, Feldman CL, Stone PH. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation. 2008;117(8):993–1002.CrossRefPubMed Chatzizisis YS, Jonas M, Coskun AU, Beigel R, Stone BV, Maynard C, Gerrity RG, Daley W, Rogers C, Edelman ER, Feldman CL, Stone PH. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation. 2008;117(8):993–1002.CrossRefPubMed
17.
go back to reference Numata S, Itatani K, Kanda K, Doi K, Yamazaki S, Morimoto K, Manabe K, Ikemoto K, Yaku H. Blood flow analysis of the aortic arch using computational fluid dynamics. Eur J Cardiothorac Surg. 2016;49(6):1578–85.CrossRefPubMed Numata S, Itatani K, Kanda K, Doi K, Yamazaki S, Morimoto K, Manabe K, Ikemoto K, Yaku H. Blood flow analysis of the aortic arch using computational fluid dynamics. Eur J Cardiothorac Surg. 2016;49(6):1578–85.CrossRefPubMed
18.
go back to reference Yiannis S, Ahmet UC, Michael J, Elazer RE, Charles LF, Peter HS. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. J Am Coll cardiol. 2007;49:2379–93.CrossRef Yiannis S, Ahmet UC, Michael J, Elazer RE, Charles LF, Peter HS. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. J Am Coll cardiol. 2007;49:2379–93.CrossRef
19.
go back to reference Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endotherial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular and vascular behavior. J Am Coll Cardiol. 2007;49:2379–93.CrossRefPubMed Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endotherial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular and vascular behavior. J Am Coll Cardiol. 2007;49:2379–93.CrossRefPubMed
20.
go back to reference Jones L, Pressdee DJ, Lamont PM, Baird RN, Murphy KP. A phase contrast (PC) rephase/dephase sequence of magnetic resonance angiography (MRA): a new technique for imaging distal run-off in the pre-operative evaluation of peripheral vascular disease. Clin Radiol. 1998;53(5):333–7.CrossRefPubMed Jones L, Pressdee DJ, Lamont PM, Baird RN, Murphy KP. A phase contrast (PC) rephase/dephase sequence of magnetic resonance angiography (MRA): a new technique for imaging distal run-off in the pre-operative evaluation of peripheral vascular disease. Clin Radiol. 1998;53(5):333–7.CrossRefPubMed
21.
go back to reference Bogren HG, Mohiaddin RH, Kilner PJ, Jimenez-Borreguero LJ, Yang GZ, Firmin DN. Blood flow patterns in the thoracic aorta studied with three-directional MR velocity mapping: the effects of age and coronary artery disease. J Magn Reson Imaging. 1997;7(5):784–93.CrossRefPubMed Bogren HG, Mohiaddin RH, Kilner PJ, Jimenez-Borreguero LJ, Yang GZ, Firmin DN. Blood flow patterns in the thoracic aorta studied with three-directional MR velocity mapping: the effects of age and coronary artery disease. J Magn Reson Imaging. 1997;7(5):784–93.CrossRefPubMed
22.
go back to reference Stadlbauer A, van der Riet W, Crelier G, Salomonowitz E. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST. Eur J Radiol. 2010;75(1):e15-21.CrossRefPubMed Stadlbauer A, van der Riet W, Crelier G, Salomonowitz E. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST. Eur J Radiol. 2010;75(1):e15-21.CrossRefPubMed
23.
go back to reference Vasanawala SS, Hanneman K, Alley MT, Hsiao A. Congenital heart disease assessment with 4D flow MRI. J Magn Reson Imaging. 2015;42:870–86.CrossRefPubMed Vasanawala SS, Hanneman K, Alley MT, Hsiao A. Congenital heart disease assessment with 4D flow MRI. J Magn Reson Imaging. 2015;42:870–86.CrossRefPubMed
24.
go back to reference Semaan E, Markl M, Malaisrie SC, Barker A, Allen B, McCarthy P, Carr JC, Collins JD. Haemodynamic outcome at four-dimensional flow magnetic resonance imaging following valve-sparing aortic root replacement with tricuspid and bicuspid valve morphology. Eur J Cardiothorac Surg. 2014;45(5):818–25.CrossRefPubMed Semaan E, Markl M, Malaisrie SC, Barker A, Allen B, McCarthy P, Carr JC, Collins JD. Haemodynamic outcome at four-dimensional flow magnetic resonance imaging following valve-sparing aortic root replacement with tricuspid and bicuspid valve morphology. Eur J Cardiothorac Surg. 2014;45(5):818–25.CrossRefPubMed
25.
go back to reference Collins JD, Semaan E, Barker A, McCarthy PM, Carr JC, Markl M, Malaisrie SC. Comparison of hemodynamics after aortic root replacement using valve-sparing or bioprosthetic valved conduit. Ann Thorac Surg. 2015;100(5):1556–62.CrossRefPubMedPubMedCentral Collins JD, Semaan E, Barker A, McCarthy PM, Carr JC, Markl M, Malaisrie SC. Comparison of hemodynamics after aortic root replacement using valve-sparing or bioprosthetic valved conduit. Ann Thorac Surg. 2015;100(5):1556–62.CrossRefPubMedPubMedCentral
26.
go back to reference Keller EJ, Malaisrie SC, Kruse J, McCarthy PM, Carr JC, Markl M, Barker AJ, Collins JD. Reduction of aberrant aortic haemodynamics following aortic root replacement with a mechanical valved conduit. Interact Cardiovasc Thorac Surg. 2016;23(3):416–23.CrossRefPubMed Keller EJ, Malaisrie SC, Kruse J, McCarthy PM, Carr JC, Markl M, Barker AJ, Collins JD. Reduction of aberrant aortic haemodynamics following aortic root replacement with a mechanical valved conduit. Interact Cardiovasc Thorac Surg. 2016;23(3):416–23.CrossRefPubMed
27.
go back to reference Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation. 1993;88:2235–47.CrossRefPubMed Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation. 1993;88:2235–47.CrossRefPubMed
28.
go back to reference Oechtering TH, Hons CF, Sieren M, Hunold P, Hennemuth A, Huellebrand M, Drexl J, Scharfschwerdt M, Richardt D, Sievers HH, Barkhausen J, Frydrychowicz A. Time-resolved 3-dimensional magnetic resonance phase contrast imaging (4D Flow MRI) analysis of hemodynamics in valve-sparing aortic root repair with an anatomically shaped sinus prosthesis. J Thorac Cardiovasc Surg. 2016;152(2):418–27.CrossRefPubMed Oechtering TH, Hons CF, Sieren M, Hunold P, Hennemuth A, Huellebrand M, Drexl J, Scharfschwerdt M, Richardt D, Sievers HH, Barkhausen J, Frydrychowicz A. Time-resolved 3-dimensional magnetic resonance phase contrast imaging (4D Flow MRI) analysis of hemodynamics in valve-sparing aortic root repair with an anatomically shaped sinus prosthesis. J Thorac Cardiovasc Surg. 2016;152(2):418–27.CrossRefPubMed
29.
go back to reference Clough RE, Waltham M, Giese D, Taylor PR, Schaeffter T. A new imaging method for assessment of aortic dissection using four-dimensional phase contrast magnetic resonance imaging. J Vasc Surg. 2012;55(4):914–23.CrossRefPubMed Clough RE, Waltham M, Giese D, Taylor PR, Schaeffter T. A new imaging method for assessment of aortic dissection using four-dimensional phase contrast magnetic resonance imaging. J Vasc Surg. 2012;55(4):914–23.CrossRefPubMed
30.
go back to reference Eriksson J, Carlhäll CJ, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T. Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson. 2010;12:9.CrossRefPubMedPubMedCentral Eriksson J, Carlhäll CJ, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T. Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson. 2010;12:9.CrossRefPubMedPubMedCentral
31.
go back to reference Silber HA, Bluemke DA, Ouyang P, Du Y. P. P., Post WS, Lima JAC. The relationship between vascular wall shear stress and flow-mediated dilation: endothelial function assessed by phase-contrast magnetic resonance angiography. J Am Coll Cardiol. 2001;38:1859–65.CrossRefPubMed Silber HA, Bluemke DA, Ouyang P, Du Y. P. P., Post WS, Lima JAC. The relationship between vascular wall shear stress and flow-mediated dilation: endothelial function assessed by phase-contrast magnetic resonance angiography. J Am Coll Cardiol. 2001;38:1859–65.CrossRefPubMed
32.
go back to reference Barker AJ, Lanning C, Shandas R. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann Biomed Eng. 2010;38(3):788–800.CrossRefPubMed Barker AJ, Lanning C, Shandas R. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann Biomed Eng. 2010;38(3):788–800.CrossRefPubMed
33.
go back to reference Harloff A, Nussbaumer A, Bauer S, Stalder AF, Frydrychowicz A, Weiller C, Hennig J, Markl M. In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI. Magn Reson Med. 2010;63(6):1529–36.CrossRefPubMed Harloff A, Nussbaumer A, Bauer S, Stalder AF, Frydrychowicz A, Weiller C, Hennig J, Markl M. In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI. Magn Reson Med. 2010;63(6):1529–36.CrossRefPubMed
34.
go back to reference Prakash S, Ethier CR. Requirements for mesh resolution in 3D computational hemodynamics. J Biomech Eng. 2001;123(2):134–44.CrossRefPubMed Prakash S, Ethier CR. Requirements for mesh resolution in 3D computational hemodynamics. J Biomech Eng. 2001;123(2):134–44.CrossRefPubMed
35.
go back to reference Barker AJ, van Ooij P, Bandi K, Garcia J, Albaghdadi M, McCarthy P, Bonow RO, Carr J, Collins J, Malaisrie SC, Markl M. Viscous energy loss in the presence of abnormal aortic flow. Magn Reson Med. 2014;72(3):620–8.CrossRefPubMed Barker AJ, van Ooij P, Bandi K, Garcia J, Albaghdadi M, McCarthy P, Bonow RO, Carr J, Collins J, Malaisrie SC, Markl M. Viscous energy loss in the presence of abnormal aortic flow. Magn Reson Med. 2014;72(3):620–8.CrossRefPubMed
36.
go back to reference Frauenfelder T, Lotfey M, Boehm T, Wildermuth S. Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation. Cardiovasc Interv Radiol. 2006;29:613–23.CrossRef Frauenfelder T, Lotfey M, Boehm T, Wildermuth S. Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation. Cardiovasc Interv Radiol. 2006;29:613–23.CrossRef
37.
go back to reference Kim HB, Hertzberg JR, Shandas R. Development and validation of echo PIV. Exp Fluid. 2004;36:455–62.CrossRef Kim HB, Hertzberg JR, Shandas R. Development and validation of echo PIV. Exp Fluid. 2004;36:455–62.CrossRef
38.
go back to reference Hong GR, Pedrizzetti G, Tonti G, Li P, Wei Z, Kim JK, Baweja A, Liu S, Chung N, Houle H, Narula J, Vannan MA. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc Imaging. 2008;1(6):705 – 17.CrossRefPubMedPubMedCentral Hong GR, Pedrizzetti G, Tonti G, Li P, Wei Z, Kim JK, Baweja A, Liu S, Chung N, Houle H, Narula J, Vannan MA. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc Imaging. 2008;1(6):705 – 17.CrossRefPubMedPubMedCentral
39.
go back to reference Faludi R, Szulik M, D’hooge J, Herijgers P, Rademakers F, Pedrizzetti G, Voigt JU. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J Thorac Cardiovasc Surg. 2010;139(6):1501–10.CrossRefPubMed Faludi R, Szulik M, D’hooge J, Herijgers P, Rademakers F, Pedrizzetti G, Voigt JU. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J Thorac Cardiovasc Surg. 2010;139(6):1501–10.CrossRefPubMed
40.
go back to reference Sengupta PP, Pedrizetti G, Narula J. Multiplanar visualization of blood flow using echocardiographic particle imaging velocimetry. JACC Cardiovasc Imaging. 2012;5(5):566–9.CrossRefPubMed Sengupta PP, Pedrizetti G, Narula J. Multiplanar visualization of blood flow using echocardiographic particle imaging velocimetry. JACC Cardiovasc Imaging. 2012;5(5):566–9.CrossRefPubMed
41.
go back to reference Prinz C, Faludi R, Walker A, Amzulescu M, Gao H, Uejima T, Fraser AG, Voigt JU. Can echocardiographic particle image velocimetry correctly detect motion patterns as they occur in blood inside heart chambers? A validation study using moving phantoms. Cardiovasc Ultrasound. 2012;10:24.CrossRefPubMedPubMedCentral Prinz C, Faludi R, Walker A, Amzulescu M, Gao H, Uejima T, Fraser AG, Voigt JU. Can echocardiographic particle image velocimetry correctly detect motion patterns as they occur in blood inside heart chambers? A validation study using moving phantoms. Cardiovasc Ultrasound. 2012;10:24.CrossRefPubMedPubMedCentral
42.
go back to reference Agati L, Cimino S, Tonti G, Cicogna F, Petronilli V, De Luca L, Iacoboni C, Pedrizzetti G. Quantitative analysis of intraventricular blood flow dynamics by echocardiographic particle image velocimetry in patients with acute myocardial infarction at different stages of left ventricular dysfunction. Eur Heart J Cardiovasc Imaging. 2014;15(11):1203–12.CrossRefPubMed Agati L, Cimino S, Tonti G, Cicogna F, Petronilli V, De Luca L, Iacoboni C, Pedrizzetti G. Quantitative analysis of intraventricular blood flow dynamics by echocardiographic particle image velocimetry in patients with acute myocardial infarction at different stages of left ventricular dysfunction. Eur Heart J Cardiovasc Imaging. 2014;15(11):1203–12.CrossRefPubMed
43.
go back to reference Adrian RJ. Particle-image technique for experimental fluid mechanics. Annu Rev Fluid Mech. 1991;23:261–304.CrossRef Adrian RJ. Particle-image technique for experimental fluid mechanics. Annu Rev Fluid Mech. 1991;23:261–304.CrossRef
44.
go back to reference Ohtsuki S, Tanaka M. The flow velocity distribution from the Doppler information on a plane in three-dimensional flow. J Visual. 2006;9:69–82.CrossRef Ohtsuki S, Tanaka M. The flow velocity distribution from the Doppler information on a plane in three-dimensional flow. J Visual. 2006;9:69–82.CrossRef
45.
go back to reference Uejima T, Koike A, Sawada H, Aizawa T, Ohtsuki S, Tanaka M, Furukawa T, Fraser AG. A new echocardiography method for identifying vortex flow in the left ventricle: numerical study. Ultrasound Med Biol. 2010;36(5):772 – 88.CrossRefPubMed Uejima T, Koike A, Sawada H, Aizawa T, Ohtsuki S, Tanaka M, Furukawa T, Fraser AG. A new echocardiography method for identifying vortex flow in the left ventricle: numerical study. Ultrasound Med Biol. 2010;36(5):772 – 88.CrossRefPubMed
46.
go back to reference Garcia D, Del Almano JC, Tanne D, Yotti R, Cortina C, Bertrand E, Antoranz JC, Perez-David E, Rieu R, Fernandez-Aviles F, Bermejo J. Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images. IEEE Trans Med Imaging. 2010;29(10):1701–13.CrossRefPubMed Garcia D, Del Almano JC, Tanne D, Yotti R, Cortina C, Bertrand E, Antoranz JC, Perez-David E, Rieu R, Fernandez-Aviles F, Bermejo J. Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images. IEEE Trans Med Imaging. 2010;29(10):1701–13.CrossRefPubMed
47.
go back to reference Honda T, Itatani K, Miyaji K, Ishii M. Assessment of the vortex flow in the post-stenotic dilatation above the pulmonary valve stenosis in an infant using echocardiography vector flow mapping. Eur Heart J. 2014 Feb;35(5):306.CrossRefPubMed Honda T, Itatani K, Miyaji K, Ishii M. Assessment of the vortex flow in the post-stenotic dilatation above the pulmonary valve stenosis in an infant using echocardiography vector flow mapping. Eur Heart J. 2014 Feb;35(5):306.CrossRefPubMed
48.
go back to reference Nogami Y, Ishizu T, Atsumi A, Yamamoto M, Kawamura R, Seo Y, Aonuma K. Abnormal early diastolic intraventricular flow ‘kinetic energy index’ assessed by vector flow mapping in patients with elevated filling pressure. Eur Heart J Cardiovasc Imaging. 2013;14(3):253 – 60.CrossRefPubMed Nogami Y, Ishizu T, Atsumi A, Yamamoto M, Kawamura R, Seo Y, Aonuma K. Abnormal early diastolic intraventricular flow ‘kinetic energy index’ assessed by vector flow mapping in patients with elevated filling pressure. Eur Heart J Cardiovasc Imaging. 2013;14(3):253 – 60.CrossRefPubMed
49.
go back to reference Nakashima K, Itatani K, Kitamura T, Oka N, Horai T, Miyazaki S, Nie M, Miyaji K. Energy dynamics of the intraventricular vortex after mitral valve surgery. Heart Vessels. 2017. doi:10.1007/s00380-017-0967-6 (in press).PubMed Nakashima K, Itatani K, Kitamura T, Oka N, Horai T, Miyazaki S, Nie M, Miyaji K. Energy dynamics of the intraventricular vortex after mitral valve surgery. Heart Vessels. 2017. doi:10.​1007/​s00380-017-0967-6 (in press).PubMed
50.
go back to reference Akiyama K, Nakamura N, Itatani K, Naito Y, Kinoshita M, Shimizu M, Hamaoka S, Kato H, Yasumoto H, Nakajima Y, Mizobe T, Numata S, Yaku H, Sawa T. Flow-dynamics assessment of mitral-valve surgery by intraoperative vector flow mapping. Interact Cardiovasc Thorac Surg. 2017;24(6):869–75.CrossRefPubMed Akiyama K, Nakamura N, Itatani K, Naito Y, Kinoshita M, Shimizu M, Hamaoka S, Kato H, Yasumoto H, Nakajima Y, Mizobe T, Numata S, Yaku H, Sawa T. Flow-dynamics assessment of mitral-valve surgery by intraoperative vector flow mapping. Interact Cardiovasc Thorac Surg. 2017;24(6):869–75.CrossRefPubMed
51.
go back to reference Akiyama K, Itatani K, Naito Y, Kinoshita M, Shimizu M, Hamaoka S, Yasumoto H, Kato H, Nakajima Y, Numata S, Yaku H, Sawa T. Vector flow mapping and impaired left ventricular flow after the alfieri stitch. J Cardiothorac Vasc Anesth. 2017;31(1):211–4.CrossRefPubMed Akiyama K, Itatani K, Naito Y, Kinoshita M, Shimizu M, Hamaoka S, Yasumoto H, Kato H, Nakajima Y, Numata S, Yaku H, Sawa T. Vector flow mapping and impaired left ventricular flow after the alfieri stitch. J Cardiothorac Vasc Anesth. 2017;31(1):211–4.CrossRefPubMed
52.
go back to reference Chung TJ. Computational fluid dynamics. 2nd edn. Cambridge: Cambridge University. 2010.CrossRef Chung TJ. Computational fluid dynamics. 2nd edn. Cambridge: Cambridge University. 2010.CrossRef
53.
go back to reference Itatani K, Miyaji K, Tomoyasu T, Nakahata Y, Ohara K, Takamoto S, Ishii M. Optimal conduit size of the extracardiac Fontan operation based on energy loss and flow stagnation. Ann Thorac Surg 2009;88(2):565–72.CrossRef Itatani K, Miyaji K, Tomoyasu T, Nakahata Y, Ohara K, Takamoto S, Ishii M. Optimal conduit size of the extracardiac Fontan operation based on energy loss and flow stagnation. Ann Thorac Surg 2009;88(2):565–72.CrossRef
54.
go back to reference Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Eng. 2010;13(5):625–40.CrossRef Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Eng. 2010;13(5):625–40.CrossRef
55.
go back to reference Hsia TY, Cosentino D, Corsini C, Pennati G, Dubini G, Migliavacca F, Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical Norwood palliations for hypoplastic left heart syndrome. Circulation. 2011;124(11 Suppl):S204–210.CrossRefPubMed Hsia TY, Cosentino D, Corsini C, Pennati G, Dubini G, Migliavacca F, Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical Norwood palliations for hypoplastic left heart syndrome. Circulation. 2011;124(11 Suppl):S204–210.CrossRefPubMed
56.
go back to reference Goto S, Nakamura M, Itatani K, Miyazaki S, Oka N, Honda T, Kitamura T, Horai T, Ishii M, Miyaji K. Synchronization of the flow and pressure waves obtained with non-simultaneous multipoint measurements. Int Heart J. 2016;57(4):449–55.CrossRefPubMed Goto S, Nakamura M, Itatani K, Miyazaki S, Oka N, Honda T, Kitamura T, Horai T, Ishii M, Miyaji K. Synchronization of the flow and pressure waves obtained with non-simultaneous multipoint measurements. Int Heart J. 2016;57(4):449–55.CrossRefPubMed
57.
go back to reference Honda T, Itatani K, Takanashi M, Kitagawa A, Ando H, Kimura S, Nakahata Y, Oka N, Miyaji K, Ishii M. Contributions of respiration and heartbeat to the pulmonary blood flow in the Fontan circulation. Ann Thorac Surg. 2016;102(5):1596–606.CrossRefPubMed Honda T, Itatani K, Takanashi M, Kitagawa A, Ando H, Kimura S, Nakahata Y, Oka N, Miyaji K, Ishii M. Contributions of respiration and heartbeat to the pulmonary blood flow in the Fontan circulation. Ann Thorac Surg. 2016;102(5):1596–606.CrossRefPubMed
58.
go back to reference Taylor C a, Fonte T a, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61:2233–41.CrossRefPubMed Taylor C a, Fonte T a, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61:2233–41.CrossRefPubMed
59.
go back to reference Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58(19):1989–97.CrossRefPubMed Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58(19):1989–97.CrossRefPubMed
60.
go back to reference Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GB, Park SJ, Schwartz RS, Shaw LJ, Mauri L. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308(12):1237–45.CrossRefPubMedPubMedCentral Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GB, Park SJ, Schwartz RS, Shaw LJ, Mauri L. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308(12):1237–45.CrossRefPubMedPubMedCentral
61.
go back to reference Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park SJ1, Christiansen EH, Kaltoft A, Lassen JF, Bøtker HE, Achenbach S. NXT Trial Study Group. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol. 2014;63(12):1145–55.CrossRefPubMed Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park SJ1, Christiansen EH, Kaltoft A, Lassen JF, Bøtker HE, Achenbach S. NXT Trial Study Group. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol. 2014;63(12):1145–55.CrossRefPubMed
62.
go back to reference Douglas PS, De Bruyne B, Pontone G, Patel MR, Norgaard BL, Byrne RA, Curzen N, Purcell I, Gutberlet M, Rioufol G, Hink U, Schuchlenz HW, Feuchtner G, Gilard M, Andreini D, Jensen JM, Hadamitzky M, Chiswell K, Cyr D, Wilk A, Wang F, Rogers C, Hlatky MA. 1-Year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM study. J Am Coll Cardiol. 2016;68(5):435–45.CrossRefPubMed Douglas PS, De Bruyne B, Pontone G, Patel MR, Norgaard BL, Byrne RA, Curzen N, Purcell I, Gutberlet M, Rioufol G, Hink U, Schuchlenz HW, Feuchtner G, Gilard M, Andreini D, Jensen JM, Hadamitzky M, Chiswell K, Cyr D, Wilk A, Wang F, Rogers C, Hlatky MA. 1-Year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM study. J Am Coll Cardiol. 2016;68(5):435–45.CrossRefPubMed
63.
go back to reference Haggerty CM, Restrepo M, Tang E, de Zélicourt D a, Sundareswaran KS, Mirabella L, Bethel J, Whitehead KK, Fogel M a, Yoganathan AP. Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis. J Thorac Cardiovasc Surg. 2013:1–10. Haggerty CM, Restrepo M, Tang E, de Zélicourt D a, Sundareswaran KS, Mirabella L, Bethel J, Whitehead KK, Fogel M a, Yoganathan AP. Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis. J Thorac Cardiovasc Surg. 2013:1–10.
64.
go back to reference Van Haesdonck JM, Mertens L, Sizaire R, Montas G, Purnode B, Daenen W, Crochet M, Gewillig M. Comparison by computerized numeric modeling of energy losses in different Fontan connections. Circulation. 1995;92:322–6.CrossRef Van Haesdonck JM, Mertens L, Sizaire R, Montas G, Purnode B, Daenen W, Crochet M, Gewillig M. Comparison by computerized numeric modeling of energy losses in different Fontan connections. Circulation. 1995;92:322–6.CrossRef
65.
go back to reference Bove EL, Migliavacca F, de Leval MR, Balossino R, Pennati G, Lloyd TR, Khambadkone S, Hsia T-Y, Dubini G. Use of mathematic modeling to compare and predict hemodynamic effects of the modified Blalock–Taussig and right ventricle-pulmonary artery shunts for hypoplastic left heart syndrome. J Thorac Cardiovasc surg. 2008;136:312–320 (e2).CrossRefPubMed Bove EL, Migliavacca F, de Leval MR, Balossino R, Pennati G, Lloyd TR, Khambadkone S, Hsia T-Y, Dubini G. Use of mathematic modeling to compare and predict hemodynamic effects of the modified Blalock–Taussig and right ventricle-pulmonary artery shunts for hypoplastic left heart syndrome. J Thorac Cardiovasc surg. 2008;136:312–320 (e2).CrossRefPubMed
66.
go back to reference Pekkan K, Kitajima HD, de Zelicourt D, Forbess JM, Parks WJ, Fogel M a, Sharma S, Kanter KR, Frakes D, Yoganathan AP. Total cavopulmonary connection flow with functional left pulmonary artery stenosis: angioplasty and fenestration in vitro. Circulation. 2005;112:3264–71.CrossRefPubMed Pekkan K, Kitajima HD, de Zelicourt D, Forbess JM, Parks WJ, Fogel M a, Sharma S, Kanter KR, Frakes D, Yoganathan AP. Total cavopulmonary connection flow with functional left pulmonary artery stenosis: angioplasty and fenestration in vitro. Circulation. 2005;112:3264–71.CrossRefPubMed
67.
go back to reference de Zélicourt D a, Pekkan K, Parks J, Kanter K, Fogel M, Yoganathan AP. Flow study of an extracardiac connection with persistent left superior vena cava. J Thorac Cardiovasc Surg. 2006;131:785–91.CrossRefPubMed de Zélicourt D a, Pekkan K, Parks J, Kanter K, Fogel M, Yoganathan AP. Flow study of an extracardiac connection with persistent left superior vena cava. J Thorac Cardiovasc Surg. 2006;131:785–91.CrossRefPubMed
68.
go back to reference Corsini Baretta a, Yang C, Vignon-Clementel W, Marsden a IE, Feinstein L, Hsia J a, Dubini T-Y, Migliavacca G, Pennati FG. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philos Transact A Math Phys Eng Sci. 2011;369:4316–30.CrossRef Corsini Baretta a, Yang C, Vignon-Clementel W, Marsden a IE, Feinstein L, Hsia J a, Dubini T-Y, Migliavacca G, Pennati FG. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philos Transact A Math Phys Eng Sci. 2011;369:4316–30.CrossRef
69.
go back to reference Qian Y, Liu JL, Itatani K, Miyaji K, Umezu M. Computational hemodynamic analysis in congenital heart disease: simulation of the Norwood procedure. Ann Biomed Eng. 2010;38(7):2302–13.CrossRefPubMed Qian Y, Liu JL, Itatani K, Miyaji K, Umezu M. Computational hemodynamic analysis in congenital heart disease: simulation of the Norwood procedure. Ann Biomed Eng. 2010;38(7):2302–13.CrossRefPubMed
Metadata
Title
New imaging tools in cardiovascular medicine: computational fluid dynamics and 4D flow MRI
Authors
Keiichi Itatani
Shohei Miyazaki
Tokoki Furusawa
Satoshi Numata
Sachiko Yamazaki
Kazuki Morimoto
Rina Makino
Hiroko Morichi
Teruyasu Nishino
Hitoshi Yaku
Publication date
01-11-2017
Publisher
Springer Japan
Published in
General Thoracic and Cardiovascular Surgery / Issue 11/2017
Print ISSN: 1863-6705
Electronic ISSN: 1863-6713
DOI
https://doi.org/10.1007/s11748-017-0834-5

Other articles of this Issue 11/2017

General Thoracic and Cardiovascular Surgery 11/2017 Go to the issue