Skip to main content
Top
Published in: Obesity Surgery 11/2014

01-11-2014 | Original Contributions

Effects of Meal Size on the Release of GLP-1 and PYY After Roux-en-Y Gastric Bypass Surgery in Obese Subjects With or Without Type 2 Diabetes

Authors: Wen Yan, David Polidori, Lynn Yieh, Jianing Di, Xiaodong Wu, Veronica Moreno, Lina Li, Celia P. Briscoe, Nigel Shankley, G. Lynis Dohm, Walter J. Pories

Published in: Obesity Surgery | Issue 11/2014

Login to get access

Abstract

Changes in gastrointestinal peptide release may play an important role in improving glucose control and reducing body weight following Roux-en-Y gastric bypass (RYGB), but the impact of low caloric intake on gut peptide release post-surgery has not been well characterized. The purpose of this study was to assess the relationships between low caloric intake and gut peptide release and how they were altered by RYGB. Obese females including ten normoglycemic (ON) and ten with type 2 diabetes mellitus (T2DM) (OD) were studied before, 1 week, and 3 months after RYGB. Nine lean, normoglycemic women were studied for comparison. Subjects were given three separate mixed meal challenges (MMCs; 75, 150, and 300 kcal). Plasma glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) were analyzed. Prior to surgery, only minimal increases in GLP-1 and PYY were observed in response to the MMCs. After surgery, the peak GLP-1 concentration was progressively elevated in response to increasing meal sizes. The meal sizes had a statistically significant impact on elevation of GLP-1 incremental areas under the curve (ΔAUC) in both ON and OD at 1 week and 3 months post-surgery visits (p < 0.05 for all comparisons). The PYY ∆AUC was also significantly increased in a meal size-dependent manner in both ON and OD at both post-surgery visits (p < 0.05 for all comparisons). Meal sizes as small as 75–300 kcal, which cause minimal stimulation in GLP-1 or PYY release in the subjects before RYGB, are sufficient to provide statistically significant, meal size-dependent increases in the peptides post-RYGB both acutely and after meaningful weight loss occurred.
Literature
1.
go back to reference Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.PubMedCrossRef Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.PubMedCrossRef
2.
go back to reference Pories WJ, Swanson MS, MacDonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222:339–50.PubMedCrossRefPubMedCentral Pories WJ, Swanson MS, MacDonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222:339–50.PubMedCrossRefPubMedCentral
3.
go back to reference Wickremesekera K, Miller G, Naotunne TD, et al. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes Surg. 2005;15:474–81.PubMedCrossRef Wickremesekera K, Miller G, Naotunne TD, et al. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes Surg. 2005;15:474–81.PubMedCrossRef
4.
go back to reference le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246:780–5.PubMedCrossRef le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246:780–5.PubMedCrossRef
6.
go back to reference Farilla L, Bulotta A, Hirshberg B, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology. 2003;144:5149–58.PubMedCrossRef Farilla L, Bulotta A, Hirshberg B, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology. 2003;144:5149–58.PubMedCrossRef
7.
8.
go back to reference Neary NM, Small CJ, Druce MR, et al. Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology. 2005;146:5120–7.PubMedCrossRef Neary NM, Small CJ, Druce MR, et al. Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology. 2005;146:5120–7.PubMedCrossRef
9.
go back to reference le Roux CW, Batterham RL, Aylwin SJ, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology. 2006;147:3–8.PubMedCrossRef le Roux CW, Batterham RL, Aylwin SJ, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology. 2006;147:3–8.PubMedCrossRef
10.
go back to reference Vilsboll T, Krarup T, Deacon CF, et al. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001;50:609–13.PubMedCrossRef Vilsboll T, Krarup T, Deacon CF, et al. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001;50:609–13.PubMedCrossRef
11.
go back to reference Beckman LM, Beckman TR, Earthman CP. Changes in gastrointestinal hormones and leptin after Roux-en-Y gastric bypass procedure: a review. J Am Diet Assoc. 2010;110:571–84.PubMedCrossRef Beckman LM, Beckman TR, Earthman CP. Changes in gastrointestinal hormones and leptin after Roux-en-Y gastric bypass procedure: a review. J Am Diet Assoc. 2010;110:571–84.PubMedCrossRef
12.
go back to reference Vincent RP, le Roux CW. Changes in gut hormones after bariatric surgery. Clin Endocrinol (Oxf). 2008;69:173–9.PubMedCrossRef Vincent RP, le Roux CW. Changes in gut hormones after bariatric surgery. Clin Endocrinol (Oxf). 2008;69:173–9.PubMedCrossRef
13.
go back to reference Ashrafian H, le Roux CW. Metabolic surgery and gut hormones—a review of bariatric entero-humoral modulation. Physiol Behav. 2009;97:620–31.PubMedCrossRef Ashrafian H, le Roux CW. Metabolic surgery and gut hormones—a review of bariatric entero-humoral modulation. Physiol Behav. 2009;97:620–31.PubMedCrossRef
14.
go back to reference Lugari R, Dell’Anna C, Ugolotti D, et al. Effect of nutrient ingestion on glucagon-like peptide 1 (7-36 amide) secretion in human type 1 and type 2 diabetes. Horm Metab Res. 2000;32:424–8.PubMedCrossRef Lugari R, Dell’Anna C, Ugolotti D, et al. Effect of nutrient ingestion on glucagon-like peptide 1 (7-36 amide) secretion in human type 1 and type 2 diabetes. Horm Metab Res. 2000;32:424–8.PubMedCrossRef
15.
go back to reference Reed MA, Pories WJ, Chapman W, et al. Roux-en-Y gastric bypass corrects hyperinsulinemia implications for the remission of type 2 diabetes. J Clin Endocrinol Metab. 2011;96:2525–31.PubMedCrossRef Reed MA, Pories WJ, Chapman W, et al. Roux-en-Y gastric bypass corrects hyperinsulinemia implications for the remission of type 2 diabetes. J Clin Endocrinol Metab. 2011;96:2525–31.PubMedCrossRef
16.
go back to reference Onaga T, Zabielski R, Kato S. Multiple regulation of peptide YY secretion in the digestive tract. Peptides. 2002;23:279–90.PubMedCrossRef Onaga T, Zabielski R, Kato S. Multiple regulation of peptide YY secretion in the digestive tract. Peptides. 2002;23:279–90.PubMedCrossRef
17.
go back to reference Adrian TE, Ferri GL, Bacarese-Hamilton AJ, et al. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89:1070–7.PubMed Adrian TE, Ferri GL, Bacarese-Hamilton AJ, et al. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89:1070–7.PubMed
18.
go back to reference Rijkelijkhuizen JM, McQuarrie K, Girman CJ, et al. Effects of meal size and composition on incretin, alpha-cell, and beta-cell responses. Metabolism. 2010;59:502–11.PubMedCrossRef Rijkelijkhuizen JM, McQuarrie K, Girman CJ, et al. Effects of meal size and composition on incretin, alpha-cell, and beta-cell responses. Metabolism. 2010;59:502–11.PubMedCrossRef
19.
go back to reference Bagger JI, Knop FK, Holst JJ, et al. Glucagon antagonism as a potential therapeutic target in type 2 diabetes. Diabetes Obes Metab. 2011;13:965–71.PubMedCrossRef Bagger JI, Knop FK, Holst JJ, et al. Glucagon antagonism as a potential therapeutic target in type 2 diabetes. Diabetes Obes Metab. 2011;13:965–71.PubMedCrossRef
20.
go back to reference Korner J, Bessler M, Cirilo LJ, et al. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab. 2005;90:359–65.PubMedCrossRef Korner J, Bessler M, Cirilo LJ, et al. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab. 2005;90:359–65.PubMedCrossRef
21.
go back to reference Borg CM, le Roux CW, Ghatei MA, et al. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93:210–5.PubMedCrossRef Borg CM, le Roux CW, Ghatei MA, et al. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93:210–5.PubMedCrossRef
22.
go back to reference Laferrere B, Heshka S, Wang K, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30:1709–16.PubMedCrossRefPubMedCentral Laferrere B, Heshka S, Wang K, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30:1709–16.PubMedCrossRefPubMedCentral
23.
go back to reference Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349:941–8.PubMedCrossRef Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349:941–8.PubMedCrossRef
24.
go back to reference Pannacciulli N, Le DS, Salbe AD, et al. Postprandial glucagon-like peptide-1 (GLP-1) response is positively associated with changes in neuronal activity of brain areas implicated in satiety and food intake regulation in humans. Neuroimage. 2007;35:511–7.PubMedCrossRefPubMedCentral Pannacciulli N, Le DS, Salbe AD, et al. Postprandial glucagon-like peptide-1 (GLP-1) response is positively associated with changes in neuronal activity of brain areas implicated in satiety and food intake regulation in humans. Neuroimage. 2007;35:511–7.PubMedCrossRefPubMedCentral
Metadata
Title
Effects of Meal Size on the Release of GLP-1 and PYY After Roux-en-Y Gastric Bypass Surgery in Obese Subjects With or Without Type 2 Diabetes
Authors
Wen Yan
David Polidori
Lynn Yieh
Jianing Di
Xiaodong Wu
Veronica Moreno
Lina Li
Celia P. Briscoe
Nigel Shankley
G. Lynis Dohm
Walter J. Pories
Publication date
01-11-2014
Publisher
Springer US
Published in
Obesity Surgery / Issue 11/2014
Print ISSN: 0960-8923
Electronic ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-014-1316-9

Other articles of this Issue 11/2014

Obesity Surgery 11/2014 Go to the issue