Skip to main content
Top
Published in: Obesity Surgery 12/2014

01-12-2014 | Original Contributions

Duodenal-Jejunal Bypass Surgery Suppresses Hepatic De Novo Lipogenesis and Alleviates Liver Fat Accumulation in a Diabetic Rat Model

Authors: Haifeng Han, Chunxiao Hu, Lei Wang, Guangyong Zhang, Shaozhuang Liu, Feng Li, Dong Sun, Sanyuan Hu

Published in: Obesity Surgery | Issue 12/2014

Login to get access

Abstract

Background

Duodenal-jejunal bypass (DJB) surgery can induce rapid and durable remission of type 2 diabetes mellitus (T2DM), but the intrinsic mechanisms remain to be elucidated. Recent studies indicated that improved hepatic insulin resistance and insulin signaling transduction might contribute to the diabetic control after DJB. Given the important role of liver adiposity in hepatic insulin resistance, this study was aimed at investigating the effects of DJB on glucose homeostasis and liver fat accumulation in a T2DM rat model induced by high-fat diet (HFD) and small dose of streptozotocin (STZ).

Methods

Forty adult male diabetic rats induced by HFD and small dose of STZ were randomly assigned to sham and DJB groups. Body weight, calorie intake, hormone levels, glucose, and lipid parameters were measured at indicated time points. Subsequently, hepatic triglycerides (TG) content and the protein levels of sterol regulatory element binding protein-1 (SREBP-1), carbohydrate response element binding protein (ChREBP), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) were evaluated at 2 and 8 weeks postoperatively.

Results

Compared with sham group, DJB induced rapid and significant improvements in glucose homeostasis and insulin sensitivity independently of weight loss and calorie restriction. The DJB-operated rats exhibited lower liver TG content and decreased hepatic SREBP-1, ChREBP, ACC, and FAS at 8 weeks postoperatively.

Conclusions

DJB alleviated hepatic fat accumulation and downregulated the key transcriptional regulators and enzymes involved in hepatic de novo lipogenesis, which might contribute to improved hepatic insulin sensitivity and glucose homeostasis after DJB.
Literature
1.
go back to reference Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239(1):1–11. PMID: 14685093.PubMedCentralPubMedCrossRef Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239(1):1–11. PMID: 14685093.PubMedCentralPubMedCrossRef
2.
go back to reference Jiao J, Bae EJ, Bandyopadhyay G, et al. Restoration of euglycemia after duodenal bypass surgery is reliant on central and peripheral inputs in Zucker fa/fa rats. Diabetes. 2013;62(4):1074–83. PMID: 23248171.PubMedCentralPubMedCrossRef Jiao J, Bae EJ, Bandyopadhyay G, et al. Restoration of euglycemia after duodenal bypass surgery is reliant on central and peripheral inputs in Zucker fa/fa rats. Diabetes. 2013;62(4):1074–83. PMID: 23248171.PubMedCentralPubMedCrossRef
3.
go back to reference Wang TT, Hu SY, Gao HD, et al. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg. 2008;247(6):968–75. PMID: 18520224.PubMedCrossRef Wang TT, Hu SY, Gao HD, et al. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg. 2008;247(6):968–75. PMID: 18520224.PubMedCrossRef
4.
go back to reference Sun D, Wang K, Yan Z, et al. Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic goto-kakizaki rats. Obes Surg. 2013;23(11):1734–42. PMID: 23700236.PubMedCrossRef Sun D, Wang K, Yan Z, et al. Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic goto-kakizaki rats. Obes Surg. 2013;23(11):1734–42. PMID: 23700236.PubMedCrossRef
5.
go back to reference DeFronzo RA, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1982;23(4):313–9. PMID: 6754515.PubMedCrossRef DeFronzo RA, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1982;23(4):313–9. PMID: 6754515.PubMedCrossRef
6.
go back to reference Leclercq IA, Da Silva MA, Schroyen B, et al. Insulin resistance in hepatocytes and sinusoidal liver cells: mechanisms and consequences. J Hepatol. 2007;47(1):142–56. PMID: 17512085.PubMedCrossRef Leclercq IA, Da Silva MA, Schroyen B, et al. Insulin resistance in hepatocytes and sinusoidal liver cells: mechanisms and consequences. J Hepatol. 2007;47(1):142–56. PMID: 17512085.PubMedCrossRef
7.
go back to reference Gastaldelli A, Cusi K, Pettiti M, et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology. 2007;133(2):496–506. PMID: 17681171.PubMedCrossRef Gastaldelli A, Cusi K, Pettiti M, et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology. 2007;133(2):496–506. PMID: 17681171.PubMedCrossRef
8.
go back to reference Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab. 2002;87(7):3023–8. PMID: 12107194.PubMedCrossRef Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab. 2002;87(7):3023–8. PMID: 12107194.PubMedCrossRef
9.
go back to reference Kotronen A, Juurinen L, Tiikkainen M, et al. Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology. 2008;135(1):122–30. PMID: 18474251.PubMedCrossRef Kotronen A, Juurinen L, Tiikkainen M, et al. Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology. 2008;135(1):122–30. PMID: 18474251.PubMedCrossRef
10.
go back to reference Samuel VT, Liu ZX, Qu X, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279(31):32345–53. PMID: 15166226.PubMedCrossRef Samuel VT, Liu ZX, Qu X, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279(31):32345–53. PMID: 15166226.PubMedCrossRef
11.
go back to reference Kotronen A, Juurinen L, Hakkarainen A, et al. Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects. Diabetes Care. 2008;31(1):165–9. PMID: 17934148.PubMedCrossRef Kotronen A, Juurinen L, Hakkarainen A, et al. Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects. Diabetes Care. 2008;31(1):165–9. PMID: 17934148.PubMedCrossRef
12.
13.
go back to reference Medina J, Fernandez-Salazar LI, Garcia-Buey L, et al. Approach to the pathogenesis and treatment of nonalcoholic steatohepatitis. Diabetes Care. 2004;27(8):2057–66. PMID: 15277442.PubMedCrossRef Medina J, Fernandez-Salazar LI, Garcia-Buey L, et al. Approach to the pathogenesis and treatment of nonalcoholic steatohepatitis. Diabetes Care. 2004;27(8):2057–66. PMID: 15277442.PubMedCrossRef
14.
go back to reference Lewis GF, Carpentier A, Adeli K, et al. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev. 2002;23(2):201–29. PMID: 11943743.PubMedCrossRef Lewis GF, Carpentier A, Adeli K, et al. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev. 2002;23(2):201–29. PMID: 11943743.PubMedCrossRef
15.
go back to reference Mottin CC, Moretto M, Padoin AV, et al. Histological behavior of hepatic steatosis in morbidly obese patients after weight loss induced by bariatric surgery. Obes Surg. 2005;15(6):788–93. PMID: 15978148.PubMedCrossRef Mottin CC, Moretto M, Padoin AV, et al. Histological behavior of hepatic steatosis in morbidly obese patients after weight loss induced by bariatric surgery. Obes Surg. 2005;15(6):788–93. PMID: 15978148.PubMedCrossRef
16.
go back to reference Weiner RA. Surgical treatment of non-alcoholic steatohepatitis and non-alcoholic fatty liver disease. Dig Dis. 2010;28(1):274–9. PMID: 20460923.PubMedCrossRef Weiner RA. Surgical treatment of non-alcoholic steatohepatitis and non-alcoholic fatty liver disease. Dig Dis. 2010;28(1):274–9. PMID: 20460923.PubMedCrossRef
17.
go back to reference Dixon JB, Bhathal PS, O’Brien PE. Weight loss and non-alcoholic fatty liver disease: falls in gamma-glutamyl transferase concentrations are associated with histologic improvement. Obes Surg. 2006;16(10):1278–86. PMID: 17059735.PubMedCrossRef Dixon JB, Bhathal PS, O’Brien PE. Weight loss and non-alcoholic fatty liver disease: falls in gamma-glutamyl transferase concentrations are associated with histologic improvement. Obes Surg. 2006;16(10):1278–86. PMID: 17059735.PubMedCrossRef
18.
go back to reference Kral JG, Thung SN, Biron S, et al. Effects of surgical treatment of the metabolic syndrome on liver fibrosis and cirrhosis. Surgery. 2004;135(1):48–58. PMID: 14694300.PubMedCrossRef Kral JG, Thung SN, Biron S, et al. Effects of surgical treatment of the metabolic syndrome on liver fibrosis and cirrhosis. Surgery. 2004;135(1):48–58. PMID: 14694300.PubMedCrossRef
19.
go back to reference Mummadi RR, Kasturi KS, Chennareddygari S, et al. Effect of bariatric surgery on nonalcoholic fatty liver disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2008;6(12):1396–402. PMID: 18986848.PubMedCrossRef Mummadi RR, Kasturi KS, Chennareddygari S, et al. Effect of bariatric surgery on nonalcoholic fatty liver disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2008;6(12):1396–402. PMID: 18986848.PubMedCrossRef
20.
go back to reference Kindel TL, Yoder SM, Seeley RJ, et al. Duodenal-jejunal exclusion improves glucose tolerance in the diabetic, Goto-Kakizaki rat by a GLP-1 receptor-mediated mechanism. J Gastrointest Surg. 2009;13(10):1762–72. PMID: 19488823.PubMedCrossRef Kindel TL, Yoder SM, Seeley RJ, et al. Duodenal-jejunal exclusion improves glucose tolerance in the diabetic, Goto-Kakizaki rat by a GLP-1 receptor-mediated mechanism. J Gastrointest Surg. 2009;13(10):1762–72. PMID: 19488823.PubMedCrossRef
21.
go back to reference Ben-Shlomo S, Zvibel I, Shnell M, et al. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol. 2011;54(6):1214–23. PMID: 21145820.PubMedCrossRef Ben-Shlomo S, Zvibel I, Shnell M, et al. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol. 2011;54(6):1214–23. PMID: 21145820.PubMedCrossRef
22.
go back to reference de Jonge C, Rensen SS, Koek GH, et al. Endoscopic duodenal-jejunal bypass liner rapidly improves plasma parameters of nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013;11(11):1517–20. PMID: 23920034.PubMedCrossRef de Jonge C, Rensen SS, Koek GH, et al. Endoscopic duodenal-jejunal bypass liner rapidly improves plasma parameters of nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013;11(11):1517–20. PMID: 23920034.PubMedCrossRef
23.
go back to reference Reed MJ, Meszaros K, Entes LJ, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000;49(11):1390–4. PMID: 11092499.PubMedCrossRef Reed MJ, Meszaros K, Entes LJ, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000;49(11):1390–4. PMID: 11092499.PubMedCrossRef
24.
go back to reference Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9. PMID: 3899825.PubMedCrossRef Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9. PMID: 3899825.PubMedCrossRef
25.
go back to reference Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70. PMID: 10480510.PubMedCrossRef Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70. PMID: 10480510.PubMedCrossRef
26.
go back to reference Jurowich CF, Rikkala PR, Thalheimer A, et al. Duodenal-jejunal bypass improves glycemia and decreases SGLT1-mediated glucose absorption in rats with streptozotocin-induced type 2 diabetes. Ann Surg. 2013;258(1):89–97. PMID: 23478528.PubMedCrossRef Jurowich CF, Rikkala PR, Thalheimer A, et al. Duodenal-jejunal bypass improves glycemia and decreases SGLT1-mediated glucose absorption in rats with streptozotocin-induced type 2 diabetes. Ann Surg. 2013;258(1):89–97. PMID: 23478528.PubMedCrossRef
27.
go back to reference Liu S, Zhang G, Wang L, et al. The entire small intestine mediates the changes in glucose homeostasis after intestinal surgery in Goto-Kakizaki rats. Ann Surg. 2012;256(6):1049–58. PMID: 23001083.PubMedCrossRef Liu S, Zhang G, Wang L, et al. The entire small intestine mediates the changes in glucose homeostasis after intestinal surgery in Goto-Kakizaki rats. Ann Surg. 2012;256(6):1049–58. PMID: 23001083.PubMedCrossRef
28.
go back to reference Speck M, Cho YM, Asadi A, et al. Duodenal-jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1. Am J Physiol Endocrinol Metab. 2011;300(5):E923–32. PMID: 21304061.PubMedCrossRef Speck M, Cho YM, Asadi A, et al. Duodenal-jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1. Am J Physiol Endocrinol Metab. 2011;300(5):E923–32. PMID: 21304061.PubMedCrossRef
29.
go back to reference Patti ME, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 2009;17(9):1671–7. PMID: 19360006.CrossRef Patti ME, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 2009;17(9):1671–7. PMID: 19360006.CrossRef
30.
go back to reference Cummings BP, Bettaieb A, Graham JL, et al. Bile-acid-mediated decrease in endoplasmic reticulum stress: a potential contributor to the metabolic benefits of ileal interposition surgery in UCD-T2DM rats. Dis Model Mech. 2013;6(2):443–56. PMID: 23264565.PubMedCentralPubMedCrossRef Cummings BP, Bettaieb A, Graham JL, et al. Bile-acid-mediated decrease in endoplasmic reticulum stress: a potential contributor to the metabolic benefits of ileal interposition surgery in UCD-T2DM rats. Dis Model Mech. 2013;6(2):443–56. PMID: 23264565.PubMedCentralPubMedCrossRef
31.
go back to reference Kohli R, Kirby M, Setchell KD, et al. Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities. Am J Physiol Gastrointest Liver Physiol. 2010;299(3):G652–60. PMID: 20595624.PubMedCentralPubMedCrossRef Kohli R, Kirby M, Setchell KD, et al. Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities. Am J Physiol Gastrointest Liver Physiol. 2010;299(3):G652–60. PMID: 20595624.PubMedCentralPubMedCrossRef
32.
go back to reference Cummings BP, Bettaieb A, Graham JL, et al. Vertical sleeve gastrectomy improves glucose and lipid metabolism and delays diabetes onset in UCD-T2DM rats. Endocrinology. 2012;153(8):3620–32. PMID: 22719048.PubMedCentralPubMedCrossRef Cummings BP, Bettaieb A, Graham JL, et al. Vertical sleeve gastrectomy improves glucose and lipid metabolism and delays diabetes onset in UCD-T2DM rats. Endocrinology. 2012;153(8):3620–32. PMID: 22719048.PubMedCentralPubMedCrossRef
34.
35.
go back to reference Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113(10):1408–18. PMID: 15146238.PubMedCentralPubMedCrossRef Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113(10):1408–18. PMID: 15146238.PubMedCentralPubMedCrossRef
36.
go back to reference Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9. PMID: 16400329.PubMedCrossRef Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9. PMID: 16400329.PubMedCrossRef
37.
go back to reference Ryysy L, Hakkinen AM, Goto T, et al. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes. 2000;49(5):749–58. PMID: 10905483.PubMedCrossRef Ryysy L, Hakkinen AM, Goto T, et al. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes. 2000;49(5):749–58. PMID: 10905483.PubMedCrossRef
38.
go back to reference Araujo AC, Bonfleur ML, Balbo SL, et al. Duodenal-jejunal bypass surgery enhances glucose tolerance and beta-cell function in Western diet obese rats. Obes Surg. 2012;22(5):819–26. PMID: 22411572.PubMedCrossRef Araujo AC, Bonfleur ML, Balbo SL, et al. Duodenal-jejunal bypass surgery enhances glucose tolerance and beta-cell function in Western diet obese rats. Obes Surg. 2012;22(5):819–26. PMID: 22411572.PubMedCrossRef
39.
go back to reference Cummings BP, Strader AD, Stanhope KL, et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat. Gastroenterology. 2010;138(7):2437–46. 2446 e1. PMID: 20226188.PubMedCentralPubMedCrossRef Cummings BP, Strader AD, Stanhope KL, et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat. Gastroenterology. 2010;138(7):2437–46. 2446 e1. PMID: 20226188.PubMedCentralPubMedCrossRef
40.
go back to reference Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008;118(3):829–38. PMID: 18317565.PubMedCentralPubMedCrossRef Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008;118(3):829–38. PMID: 18317565.PubMedCentralPubMedCrossRef
41.
go back to reference Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9. PMID: 17060767.PubMedCentralPubMedCrossRef Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9. PMID: 17060767.PubMedCentralPubMedCrossRef
42.
go back to reference Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46(1):3–10. PMID: 8971073.PubMedCrossRef Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46(1):3–10. PMID: 8971073.PubMedCrossRef
43.
go back to reference Ferre P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab. 2010;12 Suppl 2:83–92. PMID: 21029304.PubMedCrossRef Ferre P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab. 2010;12 Suppl 2:83–92. PMID: 21029304.PubMedCrossRef
44.
go back to reference Dentin R, Girard J, Postic C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie. 2005;87(1):81–6. PMID: 15733741.PubMedCrossRef Dentin R, Girard J, Postic C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie. 2005;87(1):81–6. PMID: 15733741.PubMedCrossRef
45.
go back to reference Mencarelli A, Renga B, D'Amore C, et al. Dissociation of intestinal and hepatic activities of FXR and LXRalpha supports metabolic effects of terminal ileum interposition in rodents. Diabetes. 2013;62(10):3384–93. PMID: 23835330.PubMedCentralPubMedCrossRef Mencarelli A, Renga B, D'Amore C, et al. Dissociation of intestinal and hepatic activities of FXR and LXRalpha supports metabolic effects of terminal ileum interposition in rodents. Diabetes. 2013;62(10):3384–93. PMID: 23835330.PubMedCentralPubMedCrossRef
46.
go back to reference Foretz M, Pacot C, Dugail I, et al. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol. 1999;19(5):3760–8. PMID: 10207099.PubMedCentralPubMed Foretz M, Pacot C, Dugail I, et al. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol. 1999;19(5):3760–8. PMID: 10207099.PubMedCentralPubMed
47.
go back to reference Ide T, Shimano H, Yahagi N, et al. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol. 2004;6(4):351–7. PMID: 15048126.PubMedCrossRef Ide T, Shimano H, Yahagi N, et al. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol. 2004;6(4):351–7. PMID: 15048126.PubMedCrossRef
48.
go back to reference Poupeau A, Postic C. Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors. Biochim Biophys Acta. 2011;1812(8):995–1006. PMID: 21453770.PubMedCrossRef Poupeau A, Postic C. Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors. Biochim Biophys Acta. 2011;1812(8):995–1006. PMID: 21453770.PubMedCrossRef
49.
go back to reference Dentin R, Benhamed F, Hainault I, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes. 2006;55(8):2159–70. PMID: 16873678.PubMedCrossRef Dentin R, Benhamed F, Hainault I, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes. 2006;55(8):2159–70. PMID: 16873678.PubMedCrossRef
50.
go back to reference Liu SZ, Sun D, Zhang GY, et al. A high-fat diet reverses improvement in glucose tolerance induced by duodenal-jejunal bypass in type 2 diabetic rats. Chin Med J (Engl). 2012;125(5):912–9. PMID: 22490596. Liu SZ, Sun D, Zhang GY, et al. A high-fat diet reverses improvement in glucose tolerance induced by duodenal-jejunal bypass in type 2 diabetic rats. Chin Med J (Engl). 2012;125(5):912–9. PMID: 22490596.
Metadata
Title
Duodenal-Jejunal Bypass Surgery Suppresses Hepatic De Novo Lipogenesis and Alleviates Liver Fat Accumulation in a Diabetic Rat Model
Authors
Haifeng Han
Chunxiao Hu
Lei Wang
Guangyong Zhang
Shaozhuang Liu
Feng Li
Dong Sun
Sanyuan Hu
Publication date
01-12-2014
Publisher
Springer US
Published in
Obesity Surgery / Issue 12/2014
Print ISSN: 0960-8923
Electronic ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-014-1308-9

Other articles of this Issue 12/2014

Obesity Surgery 12/2014 Go to the issue

Letter to the Editor/LED Reply

Naming the Mini-Gastric Bypass