Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 4/2009

Open Access 01-12-2009 | Article

Novel copy number variants in children with autism and additional developmental anomalies

Authors: L. K. Davis, K. J. Meyer, D. S. Rudd, A. L. Librant, E. A. Epping, V. C. Sheffield, T. H. Wassink

Published in: Journal of Neurodevelopmental Disorders | Issue 4/2009

Login to get access

Abstract

Autism is a neurodevelopmental disorder characterized by three core symptom domains: ritualistic-repetitive behaviors, impaired social interaction, and impaired communication and language development. Recent studies have highlighted etiologically relevant recurrent copy number changes in autism, such as 16p11.2 deletions and duplications, as well as a significant role for unique, novel variants. We used Affymetrix 250K GeneChip Microarray technology (either NspI or StyI) to detect microdeletions and duplications in a subset of children from the Autism Genetic Resource Exchange (AGRE). In order to enrich our sample for potentially pathogenic CNVs we selected children with autism who had additional features suggestive of chromosomal loss associated with developmental disturbance (positive criteria filter) but who had normal cytogenetic testing (negative criteria filter). We identified families with the following features: at least one child with autism who also had facial dysmorphology, limb or digit abnormalities, or ocular abnormalities. To detect changes in copy number we used a publicly available program, Copy Number Analyser for GeneChip® (CNAG) Ver. 2.0. We identified novel deletions and duplications on chromosomes 1q24.2, 3p26.2, 4q34.2, and 6q24.3. Several of these deletions and duplications include new and interesting candidate genes for autism such as syntaxin binding protein 5 (STXBP5 also known as tomosyn) and leucine rich repeat neuronal 1 (LRRN1 also known as NLRR1). Lastly, our data suggest that rare and potentially pathogenic microdeletions and duplications may have a substantially higher prevalence in children with autism and additional developmental anomalies than in children with autism alone.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alarcon M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, Sebat J, Wigler M, Martin CL, Ledbetter DH, Nelson SF, Cantor RM, Geschwind DH. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet. 2008;82:150–9.CrossRefPubMedCentralPubMed Alarcon M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, Sebat J, Wigler M, Martin CL, Ledbetter DH, Nelson SF, Cantor RM, Geschwind DH. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet. 2008;82:150–9.CrossRefPubMedCentralPubMed
2.
go back to reference Cargile CB, Goh DL, Goodman BK, Chen XN, Korenberg JR, Semenza GL, et al. Molecular cytogenetic characterization of a subtle interstitial del(3)(p25.3p26.2) in a patient with deletion 3p syndrome. Am J Med Genet. 2002;109:133–8.CrossRefPubMed Cargile CB, Goh DL, Goodman BK, Chen XN, Korenberg JR, Semenza GL, et al. Molecular cytogenetic characterization of a subtle interstitial del(3)(p25.3p26.2) in a patient with deletion 3p syndrome. Am J Med Genet. 2002;109:133–8.CrossRefPubMed
3.
go back to reference Christian SL, Brune CW, Sudi J, Kumar RA, Liu S, Karamohamed S, Badner JA, Matsui S, Conroy J, McQuaid D, Gergel J, Hatchwell E, Gilliam TC, Gershon ES, Nowak NJ, Dobyns WB, Cookjr EH. Novel Submicroscopic Chromosomal Abnormalities Detected in Autism Spectrum Disorder. Biol Psychiatry. 2008. Christian SL, Brune CW, Sudi J, Kumar RA, Liu S, Karamohamed S, Badner JA, Matsui S, Conroy J, McQuaid D, Gergel J, Hatchwell E, Gilliam TC, Gershon ES, Nowak NJ, Dobyns WB, Cookjr EH. Novel Submicroscopic Chromosomal Abnormalities Detected in Autism Spectrum Disorder. Biol Psychiatry. 2008.
4.
go back to reference Conrad DF, Andrews TD, Carter NP, Hurles ME, Pritchard JK. A high-resolution survey of deletion polymorphism in the human genome. Nat Genet. 2006;38:75–81.CrossRefPubMed Conrad DF, Andrews TD, Carter NP, Hurles ME, Pritchard JK. A high-resolution survey of deletion polymorphism in the human genome. Nat Genet. 2006;38:75–81.CrossRefPubMed
5.
go back to reference Davis LK, Meyer KJ, Rudd DS, Librant AL, Epping EA, Sheffield VC, Wassink TH. Pax6 3' deletion results in aniridia, autism and mental retardation. Hum Genet. 2008. Davis LK, Meyer KJ, Rudd DS, Librant AL, Epping EA, Sheffield VC, Wassink TH. Pax6 3' deletion results in aniridia, autism and mental retardation. Hum Genet. 2008.
6.
go back to reference DiLavore PC, Lord C, Rutter M. The pre-linguistic autism diagnostic observation schedule. J Autism Dev Disord. 1995;25:355–79.CrossRefPubMed DiLavore PC, Lord C, Rutter M. The pre-linguistic autism diagnostic observation schedule. J Autism Dev Disord. 1995;25:355–79.CrossRefPubMed
7.
go back to reference Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39:25–7.CrossRefPubMedCentralPubMed Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39:25–7.CrossRefPubMedCentralPubMed
8.
go back to reference Feng J, Schroer R, Yan J, Song W, Yang C, Bockholt A, et al. High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neurosci Lett. 2006;409:10–3.CrossRefPubMed Feng J, Schroer R, Yan J, Song W, Yang C, Bockholt A, et al. High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neurosci Lett. 2006;409:10–3.CrossRefPubMed
9.
go back to reference Francks C, Maegawa S, Lauren J, Abrahams BS, Velayos-Baeza A, Medland SE, et al. LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol Psychiatry. 2007;12:1129–39. 1057.CrossRefPubMedCentralPubMed Francks C, Maegawa S, Lauren J, Abrahams BS, Velayos-Baeza A, Medland SE, et al. LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol Psychiatry. 2007;12:1129–39. 1057.CrossRefPubMedCentralPubMed
10.
go back to reference Fujita Y, Shirataki H, Sakisaka T, Asakura T, Ohya T, Kotani H, et al. Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron. 1998;20:905–15.CrossRefPubMed Fujita Y, Shirataki H, Sakisaka T, Asakura T, Ohya T, Kotani H, et al. Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron. 1998;20:905–15.CrossRefPubMed
11.
go back to reference Gunnarsson R, Staaf J, Jansson M, Ottesen AM, Goransson H, Liljedahl U, et al. Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia–a comparative study of four differently designed, high resolution microarray platforms. Genes Chromosomes Cancer. 2008;47:697–711.CrossRefPubMed Gunnarsson R, Staaf J, Jansson M, Ottesen AM, Goransson H, Liljedahl U, et al. Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia–a comparative study of four differently designed, high resolution microarray platforms. Genes Chromosomes Cancer. 2008;47:697–711.CrossRefPubMed
12.
go back to reference Hatsuzawa K, Lang T, Fasshauer D, Bruns D, Jahn R. The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis. J Biol Chem. 2003;278:31159–66.CrossRefPubMed Hatsuzawa K, Lang T, Fasshauer D, Bruns D, Jahn R. The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis. J Biol Chem. 2003;278:31159–66.CrossRefPubMed
13.
go back to reference Hinds DA, Kloek AP, Jen M, Chen X, Frazer KA. Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat Genet. 2006;38:82–5.CrossRefPubMed Hinds DA, Kloek AP, Jen M, Chen X, Frazer KA. Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat Genet. 2006;38:82–5.CrossRefPubMed
14.
go back to reference Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36:949–51.CrossRefPubMed Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36:949–51.CrossRefPubMed
15.
go back to reference Jacquemont ML, Sanlaville D, Redon R, Raoul O, Cormier-Daire V, Lyonnet S, et al. Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. J Med Genet. 2006;43:843–9.CrossRefPubMedCentralPubMed Jacquemont ML, Sanlaville D, Redon R, Raoul O, Cormier-Daire V, Lyonnet S, et al. Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. J Med Genet. 2006;43:843–9.CrossRefPubMedCentralPubMed
16.
go back to reference Keeling SL, Lee-Jones L, Thompson P. Interstitial deletion 4q32–34 with ulnar deficiency: 4q33 may be the critical region in 4q terminal deletion syndrome. Am J Med Genet. 2001;99:94–8.CrossRefPubMed Keeling SL, Lee-Jones L, Thompson P. Interstitial deletion 4q32–34 with ulnar deficiency: 4q33 may be the critical region in 4q terminal deletion syndrome. Am J Med Genet. 2001;99:94–8.CrossRefPubMed
17.
18.
go back to reference Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, Hansen N, et al. Mapping and sequencing of structural variation from eight human genomes. Nature. 2008;453:56–64.CrossRefPubMedCentralPubMed Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, Hansen N, et al. Mapping and sequencing of structural variation from eight human genomes. Nature. 2008;453:56–64.CrossRefPubMedCentralPubMed
19.
go back to reference Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y, et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet. 2008;82:199–207.CrossRefPubMedCentralPubMed Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y, et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet. 2008;82:199–207.CrossRefPubMedCentralPubMed
20.
21.
go back to reference Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol. 2001;11:725–32.CrossRefPubMed Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol. 2001;11:725–32.CrossRefPubMed
22.
go back to reference Konstantareas MM, Homatidis S. Chromosomal abnormalities in a series of children with autistic disorder. J Autism Dev Disord. 1999;29:275–85.CrossRefPubMed Konstantareas MM, Homatidis S. Chromosomal abnormalities in a series of children with autistic disorder. J Autism Dev Disord. 1999;29:275–85.CrossRefPubMed
23.
go back to reference Lauritsen M, Mors O, Mortensen PB, Ewald H. Infantile autism and associated autosomal chromosome abnormalities: A register-based study and a literature survey. J Child Psychol Psychiatry. 1999;40:335–45.CrossRefPubMed Lauritsen M, Mors O, Mortensen PB, Ewald H. Infantile autism and associated autosomal chromosome abnormalities: A register-based study and a literature survey. J Child Psychol Psychiatry. 1999;40:335–45.CrossRefPubMed
24.
go back to reference Li C, Wong WH. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A. 2001;98:31–6.CrossRef Li C, Wong WH. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A. 2001;98:31–6.CrossRef
25.
go back to reference Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, Mawhood L, et al. Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord. 1989;19:185–212.CrossRefPubMed Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, Mawhood L, et al. Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord. 1989;19:185–212.CrossRefPubMed
26.
go back to reference Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.CrossRefPubMed Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.CrossRefPubMed
27.
go back to reference Majercak J, Ray WJ, Espeseth A, Simon A, Shi XP, Wolffe C, et al. LRRTM3 promotes processing of amyloid-precursor protein by BACE1 and is a positional candidate gene for late-onset Alzheimer's disease. Proc Natl Acad Sci U S A. 2006;103:17967–72.CrossRefPubMedCentralPubMed Majercak J, Ray WJ, Espeseth A, Simon A, Shi XP, Wolffe C, et al. LRRTM3 promotes processing of amyloid-precursor protein by BACE1 and is a positional candidate gene for late-onset Alzheimer's disease. Proc Natl Acad Sci U S A. 2006;103:17967–72.CrossRefPubMedCentralPubMed
28.
go back to reference Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82:477–88.CrossRefPubMedCentralPubMed Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82:477–88.CrossRefPubMedCentralPubMed
29.
go back to reference McCarroll SA, Hadnott TN, Perry GH, Sabeti PC, Zody MC, Barrett JC, et al. Common deletion polymorphisms in the human genome. Nat Genet. 2006;38:86–92.CrossRefPubMed McCarroll SA, Hadnott TN, Perry GH, Sabeti PC, Zody MC, Barrett JC, et al. Common deletion polymorphisms in the human genome. Nat Genet. 2006;38:86–92.CrossRefPubMed
30.
go back to reference Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet. 2007;81:1289–97.CrossRefPubMedCentralPubMed Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet. 2007;81:1289–97.CrossRefPubMedCentralPubMed
31.
go back to reference Muller A, Holzmann K, Kestler HA. Visualization of genomic aberrations using Affymetrix SNP arrays. Bioinformatics. 2007;23:496–7.CrossRefPubMed Muller A, Holzmann K, Kestler HA. Visualization of genomic aberrations using Affymetrix SNP arrays. Bioinformatics. 2007;23:496–7.CrossRefPubMed
32.
go back to reference Nakamura K, Anitha A, Yamada K, Tsujii M, Iwayama Y, Hattori E, Toyota T, Suda S, Takei N, Iwata Y, Suzuki K, Matsuzaki H, Kawai M, Sekine Y, Tsuchiya KJ, Sugihara GI, Ouchi Y, Sugiyama T, Yoshikawa T, Mori N (2008) Genetic and expression analyses reveal elevated expression of syntaxin 1A ( STX1A) in high functioning autism. Int J Neuropsychopharmacol. 2008;1–12. Nakamura K, Anitha A, Yamada K, Tsujii M, Iwayama Y, Hattori E, Toyota T, Suda S, Takei N, Iwata Y, Suzuki K, Matsuzaki H, Kawai M, Sekine Y, Tsuchiya KJ, Sugihara GI, Ouchi Y, Sugiyama T, Yoshikawa T, Mori N (2008) Genetic and expression analyses reveal elevated expression of syntaxin 1A ( STX1A) in high functioning autism. Int J Neuropsychopharmacol. 2008;1–12.
33.
go back to reference Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, Hangaishi A, et al. A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res. 2005;65:6071–9.CrossRefPubMed Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, Hangaishi A, et al. A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res. 2005;65:6071–9.CrossRefPubMed
34.
go back to reference Pinto D, Marshall C, Feuk L, Scherer SW. Copy-number variation in control population cohorts. Hum Mol Genet. 2007;16(Spec No. 2):R168–73.CrossRefPubMed Pinto D, Marshall C, Feuk L, Scherer SW. Copy-number variation in control population cohorts. Hum Mol Genet. 2007;16(Spec No. 2):R168–73.CrossRefPubMed
35.
36.
go back to reference Ritvo ER, Jorde LB, Mason-Brothers A, Freeman BJ, Pingree C, Jones MB, et al. The UCLA-University of Utah epidemiologic survey of autism: recurrence risk estimates and genetic counseling. Am J Psychiatry. 1989;146:1032–6.CrossRefPubMed Ritvo ER, Jorde LB, Mason-Brothers A, Freeman BJ, Pingree C, Jones MB, et al. The UCLA-University of Utah epidemiologic survey of autism: recurrence risk estimates and genetic counseling. Am J Psychiatry. 1989;146:1032–6.CrossRefPubMed
37.
go back to reference Rivera H, Dominguez MG, Matute E. Follow-up of an intelligent odd-mannered teenager with del(3)(p26). Remarks on authorship and ethical commitment. Genet Couns. 2006;17:401–5.PubMed Rivera H, Dominguez MG, Matute E. Follow-up of an intelligent odd-mannered teenager with del(3)(p26). Remarks on authorship and ethical commitment. Genet Couns. 2006;17:401–5.PubMed
38.
go back to reference Roohi J, Montagna C, Tegay DH, Palmer LE, Devincent C, Pomeroy JC, Christian SL, Nowak N, Hatchwell E. Disruption of Contactin 4 in 3 Subjects with Autism Spectrum Disorder. J Med Genet. 2008. Roohi J, Montagna C, Tegay DH, Palmer LE, Devincent C, Pomeroy JC, Christian SL, Nowak N, Hatchwell E. Disruption of Contactin 4 in 3 Subjects with Autism Spectrum Disorder. J Med Genet. 2008.
39.
go back to reference Rutter M, Bailey A, Bolton P, Le Couter A Autism:syndrome definition and possible genetic mechanisms, in Nature, nurture, and psychology. In: Baron-Cohen S (ed). Washington DC: APA Books; 1993. pp 269–284. Rutter M, Bailey A, Bolton P, Le Couter A Autism:syndrome definition and possible genetic mechanisms, in Nature, nurture, and psychology. In: Baron-Cohen S (ed). Washington DC: APA Books; 1993. pp 269–284.
40.
go back to reference Sakisaka T, Baba T, Tanaka S, Izumi G, Yasumi M, Takai Y. Regulation of SNAREs by tomosyn and ROCK: implication in extension and retraction of neurites. J Cell Biol. 2004;166:17–25.CrossRefPubMedCentralPubMed Sakisaka T, Baba T, Tanaka S, Izumi G, Yasumi M, Takai Y. Regulation of SNAREs by tomosyn and ROCK: implication in extension and retraction of neurites. J Cell Biol. 2004;166:17–25.CrossRefPubMedCentralPubMed
41.
go back to reference Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Strong association of de novo copy number mutations with autism. Science. 2007;316:445–9.CrossRefPubMedCentralPubMed Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Strong association of de novo copy number mutations with autism. Science. 2007;316:445–9.CrossRefPubMedCentralPubMed
42.
go back to reference Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305:525–8.CrossRefPubMed Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305:525–8.CrossRefPubMed
43.
go back to reference Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, et al. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet. 2005;77:78–88.CrossRefPubMedCentralPubMed Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, et al. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet. 2005;77:78–88.CrossRefPubMedCentralPubMed
44.
go back to reference Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ, et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet. 2007;39:319–28.CrossRefPubMed Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ, et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet. 2007;39:319–28.CrossRefPubMed
45.
go back to reference Tsai CH, Van Dyke DL, Feldman GL. Child with velocardiofacial syndrome and del (4)(q34.2): another critical region associated with a velocardiofacial syndrome-like phenotype. Am J Med Genet. 1999;82:336–9.CrossRefPubMed Tsai CH, Van Dyke DL, Feldman GL. Child with velocardiofacial syndrome and del (4)(q34.2): another critical region associated with a velocardiofacial syndrome-like phenotype. Am J Med Genet. 1999;82:336–9.CrossRefPubMed
46.
go back to reference Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM, et al. Fine-scale structural variation of the human genome. Nat Genet. 2005;37:727–32.CrossRefPubMed Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM, et al. Fine-scale structural variation of the human genome. Nat Genet. 2005;37:727–32.CrossRefPubMed
47.
go back to reference Vogt J, Ryan E, Tischkowitz MD, Reardon W, Brueton LA. The tale of a nail sign in chromosome 4q34 deletion syndrome. Clin Dysmorphol. 2006;15:127–32.CrossRefPubMed Vogt J, Ryan E, Tischkowitz MD, Reardon W, Brueton LA. The tale of a nail sign in chromosome 4q34 deletion syndrome. Clin Dysmorphol. 2006;15:127–32.CrossRefPubMed
48.
go back to reference Wang Y, Makedon F, Pearlman J. Tumor classification based on DNA copy number aberrations determined using SNP arrays. Oncol Rep. 2006;15(Spec no):1057–9.PubMed Wang Y, Makedon F, Pearlman J. Tumor classification based on DNA copy number aberrations determined using SNP arrays. Oncol Rep. 2006;15(Spec no):1057–9.PubMed
49.
go back to reference Weidmer-Mikhail E, Sheldon S, Ghaziuddin M. Chromosomes in autism and related pervasive developmental disorders: a cytogenetic study. J Intellect Disabil Res. 1998;42:8–12.CrossRefPubMed Weidmer-Mikhail E, Sheldon S, Ghaziuddin M. Chromosomes in autism and related pervasive developmental disorders: a cytogenetic study. J Intellect Disabil Res. 1998;42:8–12.CrossRefPubMed
50.
go back to reference Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 2008;358:667–75.CrossRefPubMed Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 2008;358:667–75.CrossRefPubMed
51.
go back to reference Yizhar O, Matti U, Melamed R, Hagalili Y, Bruns D, Rettig J, et al. Tomosyn inhibits priming of large dense-core vesicles in a calcium-dependent manner. Proc Natl Acad Sci U S A. 2004;101:2578–83.CrossRefPubMedCentralPubMed Yizhar O, Matti U, Melamed R, Hagalili Y, Bruns D, Rettig J, et al. Tomosyn inhibits priming of large dense-core vesicles in a calcium-dependent manner. Proc Natl Acad Sci U S A. 2004;101:2578–83.CrossRefPubMedCentralPubMed
Metadata
Title
Novel copy number variants in children with autism and additional developmental anomalies
Authors
L. K. Davis
K. J. Meyer
D. S. Rudd
A. L. Librant
E. A. Epping
V. C. Sheffield
T. H. Wassink
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 4/2009
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1007/s11689-009-9013-z

Other articles of this Issue 4/2009

Journal of Neurodevelopmental Disorders 4/2009 Go to the issue

Poster Session

Cover essay