Skip to main content
Top
Published in: Journal of Gastrointestinal Surgery 1/2020

01-01-2020 | Acute Pancreatitis | 2019 SSAT Plenary Presentation

Therapeutic Use of Adipose-Derived Stromal Cells in a Murine Model of Acute Pancreatitis

Authors: Alexandra M. Roch, Thomas K. Maatman, Todd G. Cook, Howard H. Wu, Stephanie Merfeld-Clauss, Dmitry O. Traktuev, Keith L. March, Nicholas J. Zyromski

Published in: Journal of Gastrointestinal Surgery | Issue 1/2020

Login to get access

Abstract

Background

No specific therapy exists for acute pancreatitis (AP), and current treatment remains entirely supportive. Adipose stem cells (ASCs) have significant immunomodulatory and regenerative activities. We hypothesized that systemic administration of ASCs would mitigate inflammation in AP.

Methods

AP was induced in mice by 6 hourly intraperitoneal injections of cerulein. Twenty-four hours after AP induction, mice were randomized into four systemic treatment groups: sham group (no acute pancreatitis), vehicle, human ASCs, and human ASC–conditioned media. Mice were sacrificed at 48 h, and blood and organs were collected and analyzed. Pancreatic injury was quantified histologically using a published score (edema, inflammation, and necrosis). Pancreatic inflammation was also studied by immunohistochemistry and PCR.

Results

When using IV infusion of Hoechst-labeled ASCs, ASCs were found to localize to inflamed tissues: lungs and pancreas. Mice treated with ASCs had less severe AP, as shown by a significantly decreased histopathology score (edema, inflammation, and necrosis) (p = 0.001). ASCs infusion polarized pancreatic macrophages toward an anti-inflammatory M2 phenotype. ASC-conditioned media reduced pancreatic inflammation similarly to ASCs only, highlighting the importance of ASCs secreted factors in modulating inflammation.

Conclusion

Intravenous delivery of human ASCs markedly reduces pancreatic inflammation in a murine model of AP ASCs which represent an effective therapy for AP.
Literature
1.
go back to reference Fagenholz PJ, Fernandez-del Castillo C, Harris NS et al. Increasing United States hospital admissions for acute pancreatitis, 1988-2003. Annals of epidemiology 2007;17:491–7.PubMedCrossRef Fagenholz PJ, Fernandez-del Castillo C, Harris NS et al. Increasing United States hospital admissions for acute pancreatitis, 1988-2003. Annals of epidemiology 2007;17:491–7.PubMedCrossRef
2.
go back to reference Fagenholz PJ, Fernandez-del Castillo C, Harris NS et al. Direct medical costs of acute pancreatitis hospitalizations in the United States. Pancreas 2007;35:302–7.PubMedCrossRef Fagenholz PJ, Fernandez-del Castillo C, Harris NS et al. Direct medical costs of acute pancreatitis hospitalizations in the United States. Pancreas 2007;35:302–7.PubMedCrossRef
3.
4.
go back to reference Banks PA, Bollen TL, Dervenis et al. Classification of acute pancreatitis – 2012: revision of the Atlanta classification and definitions by international consensus. Gut 2013;62:102–11.PubMedCrossRef Banks PA, Bollen TL, Dervenis et al. Classification of acute pancreatitis – 2012: revision of the Atlanta classification and definitions by international consensus. Gut 2013;62:102–11.PubMedCrossRef
6.
go back to reference Demols A, Lemoine O, Desalie F et al. CD4(+ )T cells play an important role in acute experimental pancreatitis in mice. Gastroenterology 2000;118:582–90.PubMedCrossRef Demols A, Lemoine O, Desalie F et al. CD4(+ )T cells play an important role in acute experimental pancreatitis in mice. Gastroenterology 2000;118:582–90.PubMedCrossRef
7.
go back to reference Norman JG, Fink GW, Messina J et al. Timing of tumor necrosis factor antagonism is critical in determining outcome in murine lethal acute pancreatitis. Surgery 1996;120:515–21.PubMedCrossRef Norman JG, Fink GW, Messina J et al. Timing of tumor necrosis factor antagonism is critical in determining outcome in murine lethal acute pancreatitis. Surgery 1996;120:515–21.PubMedCrossRef
8.
go back to reference Yang J, Denham W, Carter G, et al. Macrophage pacification reduces rodent pancreatitis-induced hepatocellular injury through down-regulation of hepatic tumor necrosis factor alpha and interleukin-1beta. Hepatology 1998;28:1282–8.PubMedCrossRef Yang J, Denham W, Carter G, et al. Macrophage pacification reduces rodent pancreatitis-induced hepatocellular injury through down-regulation of hepatic tumor necrosis factor alpha and interleukin-1beta. Hepatology 1998;28:1282–8.PubMedCrossRef
9.
go back to reference Mayer J, Rau B, Gansauge F and Beger HG. Inflammatory mediators in human acute pancreatitis: clinical and pathophysiological implications. Gut 2000;47:546–52.PubMedPubMedCentralCrossRef Mayer J, Rau B, Gansauge F and Beger HG. Inflammatory mediators in human acute pancreatitis: clinical and pathophysiological implications. Gut 2000;47:546–52.PubMedPubMedCentralCrossRef
10.
go back to reference Sakai Y, Masamune A, Satoh A et al. Macrophage migration inhibitory factor is a critical mediator of severe acute pancreatitis. Gastroenterology 2003;124:725–36.PubMedCrossRef Sakai Y, Masamune A, Satoh A et al. Macrophage migration inhibitory factor is a critical mediator of severe acute pancreatitis. Gastroenterology 2003;124:725–36.PubMedCrossRef
11.
go back to reference Denham W, Yang J, Fink G et al. Gene targeting demonstrates additive detrimental effects of interleukin 1 and tumor necrosis factor during pancreatitis. Gastroenterology 1997;113:1741–6.PubMedCrossRef Denham W, Yang J, Fink G et al. Gene targeting demonstrates additive detrimental effects of interleukin 1 and tumor necrosis factor during pancreatitis. Gastroenterology 1997;113:1741–6.PubMedCrossRef
12.
go back to reference Tanaka N, Murata A, Uda K et al. Interleukin-1 receptor antagonist modifies the changes in vital organs induced by acute necrotizing pancreatitis in a rat experimental model. Critical care medicine 1995;23:901–8.PubMedCrossRef Tanaka N, Murata A, Uda K et al. Interleukin-1 receptor antagonist modifies the changes in vital organs induced by acute necrotizing pancreatitis in a rat experimental model. Critical care medicine 1995;23:901–8.PubMedCrossRef
13.
go back to reference Frossard JL, Kwak B, Chanson M et al. Cd40 ligand-deficient mice are protected against cerulein-induced acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology 2001:12;184–94.CrossRef Frossard JL, Kwak B, Chanson M et al. Cd40 ligand-deficient mice are protected against cerulein-induced acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology 2001:12;184–94.CrossRef
14.
go back to reference Bhatia M, Ramnath RD, Chevali L and Guglielmotti A. Treatment with bindarit, a blocker of MCP-1 synthesis, protects mice against acute pancreatitis. American journal of physiology. Gastrointestinal and liver physiology 2005;288:1259–65.CrossRef Bhatia M, Ramnath RD, Chevali L and Guglielmotti A. Treatment with bindarit, a blocker of MCP-1 synthesis, protects mice against acute pancreatitis. American journal of physiology. Gastrointestinal and liver physiology 2005;288:1259–65.CrossRef
15.
go back to reference Gerard C, Frossard JL, Bhatia M et al. Targeted disruption of the beta-chemokine receptor CCR1 protects against pancreatitis-associated lung injury. The Journal of clinical investigation 1997;100:2022–27.PubMedPubMedCentralCrossRef Gerard C, Frossard JL, Bhatia M et al. Targeted disruption of the beta-chemokine receptor CCR1 protects against pancreatitis-associated lung injury. The Journal of clinical investigation 1997;100:2022–27.PubMedPubMedCentralCrossRef
16.
go back to reference Banks PA, Freeman ML. Practice guidelines in acute pancreatitis. Am J Gastroenterol 2006;101:2379–400.PubMedCrossRef Banks PA, Freeman ML. Practice guidelines in acute pancreatitis. Am J Gastroenterol 2006;101:2379–400.PubMedCrossRef
17.
go back to reference Van Santvoort HC, Besselink MG, Bakker OJ. A step up approach or open necrosectomy for necrotizing pancreatitis. N Engl J Med 2010; 362:1491–502.PubMedCrossRef Van Santvoort HC, Besselink MG, Bakker OJ. A step up approach or open necrosectomy for necrotizing pancreatitis. N Engl J Med 2010; 362:1491–502.PubMedCrossRef
18.
go back to reference Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–7.PubMedCrossRef Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–7.PubMedCrossRef
19.
go back to reference Domici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytottherapy 2006;8:315–7.CrossRef Domici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytottherapy 2006;8:315–7.CrossRef
20.
go back to reference Le Blanc K, Rasmussion I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363;1439–41.PubMedCrossRef Le Blanc K, Rasmussion I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363;1439–41.PubMedCrossRef
21.
go back to reference Chen S, Liu Z, Tian N et al. Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol 2006;18:552–556.PubMed Chen S, Liu Z, Tian N et al. Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol 2006;18:552–556.PubMed
22.
go back to reference Neuhuber B, Timothy Himes B, Shumsky JS, Gallo G, Fischer I. Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res. 2005;1035:73–85.PubMedCrossRef Neuhuber B, Timothy Himes B, Shumsky JS, Gallo G, Fischer I. Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res. 2005;1035:73–85.PubMedCrossRef
23.
go back to reference Jung KH, Song SU, Yi T et al. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats. Gastroenterology 2011;140:998–1008.PubMedCrossRef Jung KH, Song SU, Yi T et al. Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats. Gastroenterology 2011;140:998–1008.PubMedCrossRef
24.
go back to reference Zuk PA, Zhu M, Mizuno H et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7:211–28.PubMedCrossRef Zuk PA, Zhu M, Mizuno H et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7:211–28.PubMedCrossRef
25.
go back to reference Strem BM, Hicick KC, Zhu M. et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 2005;54:132–41 .PubMedCrossRef Strem BM, Hicick KC, Zhu M. et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 2005;54:132–41 .PubMedCrossRef
26.
go back to reference Bura A, Planat-Benard V, Bourin P et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy 2014;16:245–57.PubMedCrossRef Bura A, Planat-Benard V, Bourin P et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy 2014;16:245–57.PubMedCrossRef
27.
go back to reference Yagi H, Soto-Gutierrez A, Parekkadan B et al. Mesenchymal stem cells: Mechanisms of immunomodulation and homing. ML Cell Transplant. 2010; 19(6):667–79.PubMedCrossRef Yagi H, Soto-Gutierrez A, Parekkadan B et al. Mesenchymal stem cells: Mechanisms of immunomodulation and homing. ML Cell Transplant. 2010; 19(6):667–79.PubMedCrossRef
28.
go back to reference Sanz-Baro R, García-Arranz M, Guadalajara H et al. First-in-human case study: pregnancy in women with Crohn’s perianal fistula treated with adipose-derived stem cells: a safety study. Stem Cells Transl. Med. 2015;4:598–602.PubMedPubMedCentralCrossRef Sanz-Baro R, García-Arranz M, Guadalajara H et al. First-in-human case study: pregnancy in women with Crohn’s perianal fistula treated with adipose-derived stem cells: a safety study. Stem Cells Transl. Med. 2015;4:598–602.PubMedPubMedCentralCrossRef
29.
go back to reference Álvaro-Gracia JM, Jover JA, García-Vicuña R et al. Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/IIa clinical trial. Ann. Rheum. Dis. 2016;76:196–202.PubMedCrossRef Álvaro-Gracia JM, Jover JA, García-Vicuña R et al. Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/IIa clinical trial. Ann. Rheum. Dis. 2016;76:196–202.PubMedCrossRef
30.
go back to reference Kim HW, Song WJ, Li Q et al. Canine adipose tissue-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating T cells in rats. J Vet Sci 2016;17:539–48.PubMedPubMedCentralCrossRef Kim HW, Song WJ, Li Q et al. Canine adipose tissue-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating T cells in rats. J Vet Sci 2016;17:539–48.PubMedPubMedCentralCrossRef
31.
go back to reference Lampel M, Kern HF. Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch A Pathol Anat Histol. 1977;373:97–117.PubMedCrossRef Lampel M, Kern HF. Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch A Pathol Anat Histol. 1977;373:97–117.PubMedCrossRef
32.
go back to reference Watanabe O, Baccino FM, Steer ML, Meldolesi J. Supramaximal caerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis. Am J Physiol. 1984;246:457–67. Watanabe O, Baccino FM, Steer ML, Meldolesi J. Supramaximal caerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis. Am J Physiol. 1984;246:457–67.
33.
go back to reference Niederau C, Ferrell LD, Grendell JH. Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology. 1985;88:1192–204.PubMedCrossRef Niederau C, Ferrell LD, Grendell JH. Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology. 1985;88:1192–204.PubMedCrossRef
34.
go back to reference Su KH, Cuthbertson C, Christophi C. Review of experimental animal models of acute pancreatitis. HPB (Oxford). 2006;8(4):264–286.PubMedCrossRef Su KH, Cuthbertson C, Christophi C. Review of experimental animal models of acute pancreatitis. HPB (Oxford). 2006;8(4):264–286.PubMedCrossRef
35.
go back to reference Zyromski NJ, Mathur A, Pitt HA et al. A murine model of obesity implicates the adipokine milieu in the pathogenesis of severe acute pancreatitis. American journal of physiology. Gastrointestinal and liver physiology 2008;295:552–8.CrossRef Zyromski NJ, Mathur A, Pitt HA et al. A murine model of obesity implicates the adipokine milieu in the pathogenesis of severe acute pancreatitis. American journal of physiology. Gastrointestinal and liver physiology 2008;295:552–8.CrossRef
37.
go back to reference Ong WK, Tan CS, Chan KL, et al. Identification of specific cell-surface markers of adipose-derived stem cells from subcutaneous and visceral fat depots. Stem Cell Reports. 2014;2(2):171–179.PubMedPubMedCentralCrossRef Ong WK, Tan CS, Chan KL, et al. Identification of specific cell-surface markers of adipose-derived stem cells from subcutaneous and visceral fat depots. Stem Cell Reports. 2014;2(2):171–179.PubMedPubMedCentralCrossRef
38.
go back to reference Weir C, Morel-Kopp MC, Gill A et al. Mesenchymal stem cells: isolation, characterisation and in vivo fluorescent dye tracking. Heart, lung & circulation 2008;17:395–403.CrossRef Weir C, Morel-Kopp MC, Gill A et al. Mesenchymal stem cells: isolation, characterisation and in vivo fluorescent dye tracking. Heart, lung & circulation 2008;17:395–403.CrossRef
39.
go back to reference Ziegler KM, Wade TE, Wang S et al. Validation of a novel, physiologic model of experimental acute pancreatitis in the mouse. American journal of translational research 2011;3:159–165.PubMed Ziegler KM, Wade TE, Wang S et al. Validation of a novel, physiologic model of experimental acute pancreatitis in the mouse. American journal of translational research 2011;3:159–165.PubMed
40.
go back to reference Traktuev DO, Prater DN, Merfeld-Clauss S et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circulation research 2009;104:1410–20.PubMedCrossRef Traktuev DO, Prater DN, Merfeld-Clauss S et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circulation research 2009;104:1410–20.PubMedCrossRef
41.
go back to reference Tu XH, Song JX, Xue XJ et al. Role of bone marrow-derived mesenchymal stem cells in a rat model of severe acute pancreatitis. World J Gastroenterol 2012;18:2270–9.PubMedPubMedCentralCrossRef Tu XH, Song JX, Xue XJ et al. Role of bone marrow-derived mesenchymal stem cells in a rat model of severe acute pancreatitis. World J Gastroenterol 2012;18:2270–9.PubMedPubMedCentralCrossRef
42.
go back to reference Meng HB, Gong J, Zhou B, et al. Therapeutic effect ofhuman umbilical cord-derived mesenchymal stem cells in rat severe acute pancreatitis. Int J Clin Exp Pathol 2013;6:2703–12.PubMedPubMedCentral Meng HB, Gong J, Zhou B, et al. Therapeutic effect ofhuman umbilical cord-derived mesenchymal stem cells in rat severe acute pancreatitis. Int J Clin Exp Pathol 2013;6:2703–12.PubMedPubMedCentral
43.
go back to reference Yang B, Bai B, Liu CX et al. Effect of umbilical cord mesenchymal stem cells on treatment of severe acute pancreatitis in rats. Cytotherapy 2013;15:154–62.PubMedCrossRef Yang B, Bai B, Liu CX et al. Effect of umbilical cord mesenchymal stem cells on treatment of severe acute pancreatitis in rats. Cytotherapy 2013;15:154–62.PubMedCrossRef
44.
go back to reference Hua J, He ZG, Qian DH, et al. Angiopoietin-1 gene-modified human mesenchymal stem cells promote angiogenesis and reduce acute pancreatitis in rats. Int J Clin Exp Pathol. 2014;7:3580–95.PubMedPubMedCentral Hua J, He ZG, Qian DH, et al. Angiopoietin-1 gene-modified human mesenchymal stem cells promote angiogenesis and reduce acute pancreatitis in rats. Int J Clin Exp Pathol. 2014;7:3580–95.PubMedPubMedCentral
45.
go back to reference Jung KH, Yi T, Son MK, et al. Therapeutic effect of human clonal bone marrow-derived mesenchymal stem cells in severe acute pancreatitis. Arch Pharm 2015;38:742–51.CrossRef Jung KH, Yi T, Son MK, et al. Therapeutic effect of human clonal bone marrow-derived mesenchymal stem cells in severe acute pancreatitis. Arch Pharm 2015;38:742–51.CrossRef
46.
go back to reference Qian D, Gong J, He Z et al. Bone marrow-derived mesenchymal stem cells repair necrotic pancreatic tissue and promote angiogenesis by secreting cellular growth factors involved in the SDF-1 alpha/CXCR4 axis in rats. Stem Cells Int vol. 2015, Article ID 306836, 20 pages, 2015.CrossRef Qian D, Gong J, He Z et al. Bone marrow-derived mesenchymal stem cells repair necrotic pancreatic tissue and promote angiogenesis by secreting cellular growth factors involved in the SDF-1 alpha/CXCR4 axis in rats. Stem Cells Int vol. 2015, Article ID 306836, 20 pages, 2015.CrossRef
47.
go back to reference Yin G, Hu G, Wan R, et al. Role of microvesicles from bone marrow mesenchymal stem cells in acute pancreatitis. Pancreas 2016;45;1282–93.PubMedCrossRef Yin G, Hu G, Wan R, et al. Role of microvesicles from bone marrow mesenchymal stem cells in acute pancreatitis. Pancreas 2016;45;1282–93.PubMedCrossRef
48.
go back to reference He Z, Hua J, Qian D, et al. Intravenous hMSCs ameliorate acute pancreatitis in mice via secretion of tumor necrosis factor-alpha stimulated gene/protein 6. Sci Rep 2016;6: 38438PubMedPubMedCentralCrossRef He Z, Hua J, Qian D, et al. Intravenous hMSCs ameliorate acute pancreatitis in mice via secretion of tumor necrosis factor-alpha stimulated gene/protein 6. Sci Rep 2016;6: 38438PubMedPubMedCentralCrossRef
49.
go back to reference Kawakubo K, Ohnishi S, Fukita H et al. Effect of fetal membrane-derived mesenchymal stem cell transplantation in rats with acute and chronic pancreatitis. Pancreas 2016;45:707–13.PubMedCrossRef Kawakubo K, Ohnishi S, Fukita H et al. Effect of fetal membrane-derived mesenchymal stem cell transplantation in rats with acute and chronic pancreatitis. Pancreas 2016;45:707–13.PubMedCrossRef
50.
go back to reference Zhao H, He Z, Huang D et al. Infusion of bone marrow mesenchymal stem cells attenuates experimental severe acute pancreatitis in rats. Stem Cells Int 2016;2016:7174319.PubMedPubMedCentral Zhao H, He Z, Huang D et al. Infusion of bone marrow mesenchymal stem cells attenuates experimental severe acute pancreatitis in rats. Stem Cells Int 2016;2016:7174319.PubMedPubMedCentral
51.
go back to reference Lu F, Wang F, Chen Z, et al. Effect of mesenchymal stem cells on small intestinal injury in a rat model of acute necrotizing pancreatitis. Stem Cell Res Ther 2017;8:12.PubMedPubMedCentralCrossRef Lu F, Wang F, Chen Z, et al. Effect of mesenchymal stem cells on small intestinal injury in a rat model of acute necrotizing pancreatitis. Stem Cell Res Ther 2017;8:12.PubMedPubMedCentralCrossRef
52.
go back to reference Patrikoski M, Mannerström B, and Miettinen S, “Perspectives for Clinical Translation of Adipose Stromal/Stem Cells,” Stem Cells International 2019; vol. 2019, Article ID 5858247, 21 pages.CrossRef Patrikoski M, Mannerström B, and Miettinen S, “Perspectives for Clinical Translation of Adipose Stromal/Stem Cells,” Stem Cells International 2019; vol. 2019, Article ID 5858247, 21 pages.CrossRef
53.
go back to reference Melief SM, Zwaginga JJ, Fibbe WE and Relofs H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem cells translational medicine2013;2:446–55.CrossRef Melief SM, Zwaginga JJ, Fibbe WE and Relofs H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem cells translational medicine2013;2:446–55.CrossRef
54.
go back to reference Mikami Y, Takeda K, Shibuya K et al. Do peritoneal macrophages play an essential role in the progression of acute pancreatitis in rats? Pancreas. 2003;27:253–60.PubMedCrossRef Mikami Y, Takeda K, Shibuya K et al. Do peritoneal macrophages play an essential role in the progression of acute pancreatitis in rats? Pancreas. 2003;27:253–60.PubMedCrossRef
55.
go back to reference Shrivastava P, Bhatia M. Essential role of monocytes and macrophages in the progression of acute pancreatitis. World J Gastroenterol. 2010;16(32):3995–4002.PubMedPubMedCentralCrossRef Shrivastava P, Bhatia M. Essential role of monocytes and macrophages in the progression of acute pancreatitis. World J Gastroenterol. 2010;16(32):3995–4002.PubMedPubMedCentralCrossRef
56.
go back to reference Maatman TK, Mahajan S, Roch AM et al. High rates of readmission in necrotizing pancreatitis: Natural history of opportunity for improvement? J Gastrointest Surg 2019 Maatman TK, Mahajan S, Roch AM et al. High rates of readmission in necrotizing pancreatitis: Natural history of opportunity for improvement? J Gastrointest Surg 2019
57.
go back to reference Pastor CM, Matthay MA and Frossard JL. Pancreatitis-associated acute lung injury: new insights. Chest 2003;124:2341–51.PubMedCrossRef Pastor CM, Matthay MA and Frossard JL. Pancreatitis-associated acute lung injury: new insights. Chest 2003;124:2341–51.PubMedCrossRef
58.
go back to reference Raghu MG, Wig JD, Kocchar R et al. Lung complications in acute pancreatitis. JOP : Journal of the pancreas 2007;8:177–85.PubMed Raghu MG, Wig JD, Kocchar R et al. Lung complications in acute pancreatitis. JOP : Journal of the pancreas 2007;8:177–85.PubMed
59.
go back to reference Talvik R, Liigant A, Sissak HM and O’Konnel-Bronina N. Respiratory failure in acute pancreatitis. Intensive care medicine 1977;3:97–8.PubMedCrossRef Talvik R, Liigant A, Sissak HM and O’Konnel-Bronina N. Respiratory failure in acute pancreatitis. Intensive care medicine 1977;3:97–8.PubMedCrossRef
60.
go back to reference Tran DD, Oe PL, de Fijter CW et al. Acute renal failure in patients with acute pancreatitis: prevalence, risk factors, and outcome. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 1993;8:1079–84. Tran DD, Oe PL, de Fijter CW et al. Acute renal failure in patients with acute pancreatitis: prevalence, risk factors, and outcome. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 1993;8:1079–84.
61.
go back to reference Lu H, Poirier C, Cook T et al. Conditioned media from adipose stromal cells limit lipopolysaccharide-induced lung injury, endothelial hyperpermeability and apoptosis. J Transl Med 2015;13:67.PubMedPubMedCentralCrossRef Lu H, Poirier C, Cook T et al. Conditioned media from adipose stromal cells limit lipopolysaccharide-induced lung injury, endothelial hyperpermeability and apoptosis. J Transl Med 2015;13:67.PubMedPubMedCentralCrossRef
62.
go back to reference Lange C, Togel F, Ittrich H et al. Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney international 2005;68:1613–7.PubMedCrossRef Lange C, Togel F, Ittrich H et al. Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney international 2005;68:1613–7.PubMedCrossRef
63.
go back to reference Rehman J, Traktuev D, Li J et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109(10): 1292–8.PubMedCrossRef Rehman J, Traktuev D, Li J et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109(10): 1292–8.PubMedCrossRef
64.
go back to reference Wang M, Yuan Q, Xie L. Mesenchymal Stem Cell-Based Immunomodulation: Properties and Clinical Application. Stem Cells Int. 2018;2018:3057624.PubMedPubMedCentral Wang M, Yuan Q, Xie L. Mesenchymal Stem Cell-Based Immunomodulation: Properties and Clinical Application. Stem Cells Int. 2018;2018:3057624.PubMedPubMedCentral
Metadata
Title
Therapeutic Use of Adipose-Derived Stromal Cells in a Murine Model of Acute Pancreatitis
Authors
Alexandra M. Roch
Thomas K. Maatman
Todd G. Cook
Howard H. Wu
Stephanie Merfeld-Clauss
Dmitry O. Traktuev
Keith L. March
Nicholas J. Zyromski
Publication date
01-01-2020
Publisher
Springer US
Published in
Journal of Gastrointestinal Surgery / Issue 1/2020
Print ISSN: 1091-255X
Electronic ISSN: 1873-4626
DOI
https://doi.org/10.1007/s11605-019-04411-w

Other articles of this Issue 1/2020

Journal of Gastrointestinal Surgery 1/2020 Go to the issue

Evidence-Based Current Surgical Practice

What’s New in the Management of Incarcerated Hernia