Skip to main content
Top
Published in: Journal of Gastrointestinal Surgery 9/2011

01-09-2011 | Original Article

Peptide Absorption After Massive Proximal Small Bowel Resection: Mechanisms of Ileal Adaptation

Authors: Hisham G. Qandeel, Fernando Alonso, David J. Hernandez, Srivats Madhavan, Judith A. Duenes, Ye Zheng, Michael G. Sarr

Published in: Journal of Gastrointestinal Surgery | Issue 9/2011

Login to get access

Abstract

Background

Protein absorption occurs as di- and tri-peptides via H+/peptide co-transporter-1 (PepT1).

Aim

The aim of this study is to identify mechanisms of ileal adaptation after massive proximal enterectomy.

Hypothesis

Ileal adaptation in uptake of peptides is mediated through upregulation of PepT1 gene expression.

Study Design

Rats underwent 70% jejunoileal resection. Total mucosal cellular levels of messenger RNA (mRNA) and protein and transporter-mediated uptake per centimeter of the di-peptide glycyl-sarcosine (Gly-Sar) were compared in remnant ileum 1 and 4 weeks postoperatively to control and to 1-week sham laparotomy rats. Histomorphology, food consumption, and weights of rats were monitored.

Results

After 70% resection, although mRNA per cell for PepT1 decreased at 1 week (p = 0.002), expression of mRNA at 4 weeks and protein at 1 and 4 weeks in remnant ileum were unchanged (p > 0.1). Ileal Gly-Sar uptake (V max—nanomoles per centimeter per minute, i.e., number of transporters per centimeter) increased at 1 and 4 weeks compared to control and 1-week sham (p < 0.05 each); K m (i.e., transporter function) was unchanged. Villous heights (millimeters) in remnant ileum increased at 1- and 4-week time points over controls (0.45 and 0.57 vs 0.21, resp; p < 0.001).

Conclusions

Ileal adaptation to proximal resection for peptide absorption occurs through cellular proliferation (hyperplasia) and not through cellular upregulation of PepT1 mRNA or protein per enterocyte.
Literature
2.
go back to reference Vanderhoof JA, Langnas AN. Short-bowel syndrome in children and adults. Gastroenterology 1997;113:1767–78.PubMedCrossRef Vanderhoof JA, Langnas AN. Short-bowel syndrome in children and adults. Gastroenterology 1997;113:1767–78.PubMedCrossRef
3.
go back to reference Jackson C, Buchman AL. Advances in the management of short bowel syndrome. Curr Gastroenterol Rep. 2005;7(5):373–8.PubMedCrossRef Jackson C, Buchman AL. Advances in the management of short bowel syndrome. Curr Gastroenterol Rep. 2005;7(5):373–8.PubMedCrossRef
4.
go back to reference Keller J, Panter H, Layer P. Management of the short bowel syndrome after extensive small bowel resection. Best Pract Res Clin Gastroenterol. 2004;18(5):977–92.PubMed Keller J, Panter H, Layer P. Management of the short bowel syndrome after extensive small bowel resection. Best Pract Res Clin Gastroenterol. 2004;18(5):977–92.PubMed
5.
go back to reference Sundaram A, Koutkia P, Apovian, C. Nutritional management of short bowel syndrome in adults. J Clin Gastroenterol. 2002; 34 (3):207–220PubMedCrossRef Sundaram A, Koutkia P, Apovian, C. Nutritional management of short bowel syndrome in adults. J Clin Gastroenterol. 2002; 34 (3):207–220PubMedCrossRef
6.
go back to reference Scolapio JS, Camilleri M, Fleming CR. Gastrointestinal motility considerations in patients with short-bowel syndrome. Dig Dis 1997; 15:253–62.PubMedCrossRef Scolapio JS, Camilleri M, Fleming CR. Gastrointestinal motility considerations in patients with short-bowel syndrome. Dig Dis 1997; 15:253–62.PubMedCrossRef
7.
go back to reference Drozdowski LA, Clandinin MT, Thomson AB. Morphological, kinetic, membrane biochemical and genetic aspects of intestinal enteroplasticity. World J Gastroenterol 2009; 15(7):774–87PubMedCrossRef Drozdowski LA, Clandinin MT, Thomson AB. Morphological, kinetic, membrane biochemical and genetic aspects of intestinal enteroplasticity. World J Gastroenterol 2009; 15(7):774–87PubMedCrossRef
8.
go back to reference Haxhija EQ, Yang H, Spencer AU, Sun X, Teitelbaum DH. Intestinal epithelial cell proliferation is dependent on the site of massive small bowel resection. Pediatr Surg Int 2007; 23:379–90.PubMedCrossRef Haxhija EQ, Yang H, Spencer AU, Sun X, Teitelbaum DH. Intestinal epithelial cell proliferation is dependent on the site of massive small bowel resection. Pediatr Surg Int 2007; 23:379–90.PubMedCrossRef
9.
go back to reference Baksheev L, Fuller PJ. Gene expression in the adapting small bowel after massive small bowel resection. J Gastroenterol 2006; 41:1041–1052.PubMedCrossRef Baksheev L, Fuller PJ. Gene expression in the adapting small bowel after massive small bowel resection. J Gastroenterol 2006; 41:1041–1052.PubMedCrossRef
10.
go back to reference Weale AR, Edwards AG, Bailey M, Lear PA. Intestinal adaptation after massive intestinal resection. Postgrad Med J 2005;81(953):178–84.PubMedCrossRef Weale AR, Edwards AG, Bailey M, Lear PA. Intestinal adaptation after massive intestinal resection. Postgrad Med J 2005;81(953):178–84.PubMedCrossRef
11.
go back to reference Martin GR, Wallce LE, Sigalet DL. Glucagon-like peptide-2 induces intestinal adaptation in parenterally fed rats with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2004; 286:G964–G972.PubMedCrossRef Martin GR, Wallce LE, Sigalet DL. Glucagon-like peptide-2 induces intestinal adaptation in parenterally fed rats with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2004; 286:G964–G972.PubMedCrossRef
12.
go back to reference Albert V, Young GP. Differentiation status of rat enterocytes after intestinal adaptation to jejunoileal bypass. Gut 1992; 33(12):1638–1643.PubMedCrossRef Albert V, Young GP. Differentiation status of rat enterocytes after intestinal adaptation to jejunoileal bypass. Gut 1992; 33(12):1638–1643.PubMedCrossRef
13.
go back to reference Iqbal CW, Qandeel HG, Zheng Y, Duenes JA, Sarr MG. Mechanisms of ileal adaptation for glucose absorption after proximal-based small bowel resection. J Gastrointest Surg 2008;12:1854–64PubMedCrossRef Iqbal CW, Qandeel HG, Zheng Y, Duenes JA, Sarr MG. Mechanisms of ileal adaptation for glucose absorption after proximal-based small bowel resection. J Gastrointest Surg 2008;12:1854–64PubMedCrossRef
14.
go back to reference Madhavan S, Scow JS, Nagao M, Zhen Y, Duenes JA, Sarr MG. Intestinal adaptation for oligopeptide absorption via PepT1 after massive (70%) mid small bowel resection. J Gastrointest Surg 15:240–249, 2011.PubMedCrossRef Madhavan S, Scow JS, Nagao M, Zhen Y, Duenes JA, Sarr MG. Intestinal adaptation for oligopeptide absorption via PepT1 after massive (70%) mid small bowel resection. J Gastrointest Surg 15:240–249, 2011.PubMedCrossRef
15.
go back to reference Adibi SA. The oligopeptide transporter (PEPT1) in human intestine: biology and function. Gastroenterology 1997;113:332–340.PubMedCrossRef Adibi SA. The oligopeptide transporter (PEPT1) in human intestine: biology and function. Gastroenterology 1997;113:332–340.PubMedCrossRef
16.
go back to reference Saito H, Okuda M, Terada T, Sasaki S, Inui K. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of β-lactam antibiotics in the intestine and kidney. J Pharmacol Exp Ther 1995;275:1631–1637.PubMed Saito H, Okuda M, Terada T, Sasaki S, Inui K. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of β-lactam antibiotics in the intestine and kidney. J Pharmacol Exp Ther 1995;275:1631–1637.PubMed
17.
go back to reference Daniel H. Molecular and integrative physiology of intestinal peptide transport. Ann Rev Physiol 2004;66:361–384.CrossRef Daniel H. Molecular and integrative physiology of intestinal peptide transport. Ann Rev Physiol 2004;66:361–384.CrossRef
18.
go back to reference Adibi SA. Regulation of expression of the intestinal oligopeptide transporter (Pept-1) in health and disease. Am J Physiol 2003;285:G779–G788. Adibi SA. Regulation of expression of the intestinal oligopeptide transporter (Pept-1) in health and disease. Am J Physiol 2003;285:G779–G788.
19.
go back to reference Pan X, Terada T, Irie M, Saito H, Inui K. Diurnal rhythm of H+-peptide cotransporter in rat small intestine. Am J Physiol 2002;283:G57–G64. Pan X, Terada T, Irie M, Saito H, Inui K. Diurnal rhythm of H+-peptide cotransporter in rat small intestine. Am J Physiol 2002;283:G57–G64.
20.
go back to reference Qandeel HG, Duenes JA, Zheng Y, Sarr MG. Diurnal expression and function of peptide transporter 1 (PEPT1). J Surg Res 2009;156(1):123–8PubMedCrossRef Qandeel HG, Duenes JA, Zheng Y, Sarr MG. Diurnal expression and function of peptide transporter 1 (PEPT1). J Surg Res 2009;156(1):123–8PubMedCrossRef
21.
go back to reference Qandeel HQ, Alonso F, Hernandez DJ, Duenes JA, Zheng Y, Scow JS, Sarr MG. Role of vagal innervation in diurnal rhythm of intestinal peptide transporter 1 (PEPT1). J Gastrointest Surg (2009) 13:1976–1985PubMedCrossRef Qandeel HQ, Alonso F, Hernandez DJ, Duenes JA, Zheng Y, Scow JS, Sarr MG. Role of vagal innervation in diurnal rhythm of intestinal peptide transporter 1 (PEPT1). J Gastrointest Surg (2009) 13:1976–1985PubMedCrossRef
22.
go back to reference Matthews DM, Grandy RH, Taylor E, Burston D. Influx of two dipeptides, glycylsarcosine and L-glutamyl-L-glutamic acid, into hamster jejunum in vitro. Clin Sci 1979;56:15.PubMed Matthews DM, Grandy RH, Taylor E, Burston D. Influx of two dipeptides, glycylsarcosine and L-glutamyl-L-glutamic acid, into hamster jejunum in vitro. Clin Sci 1979;56:15.PubMed
23.
go back to reference Nielsen CU, Amstrup J, Steffansen B, Frokjaer S, and Brodin B. Epidermal growth factor inhibits glycylsarcosine transport and hPepT1 expression in a human intestinal cell line. Am J Physiol Gastrointest Liver Physiol 281: G191–G199, 2001.PubMed Nielsen CU, Amstrup J, Steffansen B, Frokjaer S, and Brodin B. Epidermal growth factor inhibits glycylsarcosine transport and hPepT1 expression in a human intestinal cell line. Am J Physiol Gastrointest Liver Physiol 281: G191–G199, 2001.PubMed
24.
go back to reference Ashida K, Katsura T, Motohashi H, Saito H, and Inui K. Thyroid hormone regulates the activity and expression of the peptide transporter PEPT1 in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 282: G617–G623, 2002.PubMed Ashida K, Katsura T, Motohashi H, Saito H, and Inui K. Thyroid hormone regulates the activity and expression of the peptide transporter PEPT1 in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 282: G617–G623, 2002.PubMed
25.
go back to reference Avissar NE, Ziegler TR, Wang HT, Gu LH, Miller JH, Iannoli P, Leibach FH, Ganapathy V, Sax HC. Growth factors regulation of rabbit sodium-dependent neutral amino acid transporter ATB0 and oligopeptide transporter 1 mRNAs expression after enterectomy. J Parenter Enteral Nutr 2001;25:65–72.CrossRef Avissar NE, Ziegler TR, Wang HT, Gu LH, Miller JH, Iannoli P, Leibach FH, Ganapathy V, Sax HC. Growth factors regulation of rabbit sodium-dependent neutral amino acid transporter ATB0 and oligopeptide transporter 1 mRNAs expression after enterectomy. J Parenter Enteral Nutr 2001;25:65–72.CrossRef
26.
go back to reference Ogihara H, Suzuki T, Inui K, Takata K. Peptide transporter in the rat small intestine: ultrastructural localization and the effect of starvation and administration of amino acids. Histochem J 1999;31:169–174.PubMedCrossRef Ogihara H, Suzuki T, Inui K, Takata K. Peptide transporter in the rat small intestine: ultrastructural localization and the effect of starvation and administration of amino acids. Histochem J 1999;31:169–174.PubMedCrossRef
27.
go back to reference Affleck JA, Helliwell PA, Kellett GL. Immunocytochemical detection of GLUT2 at the rat intestinal brush-border membrane. J Histochem Cytochem 2003; 51(11):1567–74.PubMedCrossRef Affleck JA, Helliwell PA, Kellett GL. Immunocytochemical detection of GLUT2 at the rat intestinal brush-border membrane. J Histochem Cytochem 2003; 51(11):1567–74.PubMedCrossRef
28.
go back to reference Au A, Gupta A, Cheeseman CI. Rapid insertion of GLUT2 into the rat jejunal brush-border membrane promoted by glucagon-like peptide. Biochem J 2002; 367:247–254.PubMedCrossRef Au A, Gupta A, Cheeseman CI. Rapid insertion of GLUT2 into the rat jejunal brush-border membrane promoted by glucagon-like peptide. Biochem J 2002; 367:247–254.PubMedCrossRef
29.
go back to reference Helliwell PA, Richardson M, Kellett GL, et al. Stimulation of fructose transport across intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C. Biochem J 2000; 350:149–154.PubMedCrossRef Helliwell PA, Richardson M, Kellett GL, et al. Stimulation of fructose transport across intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C. Biochem J 2000; 350:149–154.PubMedCrossRef
30.
go back to reference Zheng Y, Duenes JA, Qandeel HG, Sarr MG. Translocation of Transfected GLUT2 to the Apical Membrane in Rat Intestinal IEC-6 Cells. Gastroenterology (Abstract) 2009; 136 (1), A95 Zheng Y, Duenes JA, Qandeel HG, Sarr MG. Translocation of Transfected GLUT2 to the Apical Membrane in Rat Intestinal IEC-6 Cells. Gastroenterology (Abstract) 2009; 136 (1), A95
31.
go back to reference Zheng Y, Duenes JA, Qandeel HG, Sarr MG. Glucose-dependent translocation of GLUT2 in human intestinal CACO-2 cells. Gastroenterology (Abstract) 2009; 136 (1), A877. Zheng Y, Duenes JA, Qandeel HG, Sarr MG. Glucose-dependent translocation of GLUT2 in human intestinal CACO-2 cells. Gastroenterology (Abstract) 2009; 136 (1), A877.
32.
go back to reference Scow JS, Tavakkolizadeh A, Zheng Y, Sarr MG. Acute “adaptation” by the small intestinal enterocyte: a post-transcriptional mechanism involving apical translocation of nutrient transporters. Surgery 2011; 149(5):601–5.PubMedCrossRef Scow JS, Tavakkolizadeh A, Zheng Y, Sarr MG. Acute “adaptation” by the small intestinal enterocyte: a post-transcriptional mechanism involving apical translocation of nutrient transporters. Surgery 2011; 149(5):601–5.PubMedCrossRef
Metadata
Title
Peptide Absorption After Massive Proximal Small Bowel Resection: Mechanisms of Ileal Adaptation
Authors
Hisham G. Qandeel
Fernando Alonso
David J. Hernandez
Srivats Madhavan
Judith A. Duenes
Ye Zheng
Michael G. Sarr
Publication date
01-09-2011
Publisher
Springer-Verlag
Published in
Journal of Gastrointestinal Surgery / Issue 9/2011
Print ISSN: 1091-255X
Electronic ISSN: 1873-4626
DOI
https://doi.org/10.1007/s11605-011-1581-z

Other articles of this Issue 9/2011

Journal of Gastrointestinal Surgery 9/2011 Go to the issue