Skip to main content
Top
Published in: Japanese Journal of Radiology 7/2017

01-07-2017 | Original Article

Quantitative accuracy of computed tomography perfusion under low-dose conditions, measured using a hollow-fiber phantom

Authors: Kazufumi Suzuki, Hiroyuki Hashimoto, Eiji Okaniwa, Hiroshi Iimura, Shingo Suzaki, Kayoko Abe, Shuji Sakai

Published in: Japanese Journal of Radiology | Issue 7/2017

Login to get access

Abstract

Purpose

The purpose of this study was to investigate the quantitative accuracy under low-dose conditions on computed tomography (CT) perfusion using a hollow-fiber phantom that had the theoretical absolute values of perfusion indices.

Materials and methods

Our phantom comprised two components, i.e., a hollow-fiber hemodialyzer to pump the diluted contrast material and a surrounding syringe-shaped X-ray-absorbing body to simulate the absorption of X-rays by a brain and cranium. We performed CTP scans on the phantom under various dose conditions ranging from 20 to 140 mA using a 64-row CT scanner, measuring experimental cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP) values using a deconvolution algorithm.

Results

The theoretical value of the CBV was within the 95% confidence interval of CBV values measured under 80 mA. The CBV measured under low-dose settings and all CBF values measured were smaller than the theoretically calculated ones, and all MTT values measured were larger. All measured values of the CBV, CBF, MTT, and TTP decreased with an increase in image noise under lower dose conditions.

Conclusion

It is difficult to define a low-dose limit in clinical scan conditions because of the complex characteristics of perfusion indices.
Appendix
Available only for authorised users
Literature
1.
go back to reference Klotz E, König M. Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol. 1999;30:170–84.CrossRefPubMed Klotz E, König M. Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol. 1999;30:170–84.CrossRefPubMed
2.
go back to reference Mayer TE, Hamann GF, Baranczyk J, Rosengarten B, Klotz E, Wiesmann M, et al. Dynamic CT perfusion imaging of acute stroke. AJNR Am J Neuroradiol. 2000;21:1441–9.PubMed Mayer TE, Hamann GF, Baranczyk J, Rosengarten B, Klotz E, Wiesmann M, et al. Dynamic CT perfusion imaging of acute stroke. AJNR Am J Neuroradiol. 2000;21:1441–9.PubMed
3.
go back to reference Lev MH, Segal AZ, Farkas J, Hossain ST, Putman C, Hunter GJ, et al. Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome. Stroke. 2001;32:2021–8.CrossRefPubMed Lev MH, Segal AZ, Farkas J, Hossain ST, Putman C, Hunter GJ, et al. Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome. Stroke. 2001;32:2021–8.CrossRefPubMed
4.
go back to reference Othman AE, Afat S, Brockmann MA, Nikoubashman O, Brockmann C, Nikolaou K, et al. Radiation dose reduction in perfusion CT imaging of the brain: a review of the literature. J Neuroradiol. 2015;43:1–5.CrossRefPubMed Othman AE, Afat S, Brockmann MA, Nikoubashman O, Brockmann C, Nikolaou K, et al. Radiation dose reduction in perfusion CT imaging of the brain: a review of the literature. J Neuroradiol. 2015;43:1–5.CrossRefPubMed
5.
go back to reference Ogawa T, Hosokawa H. Nihonjin-no-nou (Japanese). Tokyo: Kanehara Co., Ltd.; 1953. p. 9–28. Ogawa T, Hosokawa H. Nihonjin-no-nou (Japanese). Tokyo: Kanehara Co., Ltd.; 1953. p. 9–28.
6.
go back to reference Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. Appl Physiol. 1954;6:731–44. Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. Appl Physiol. 1954;6:731–44.
7.
go back to reference Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991;29:231–40.CrossRefPubMed Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991;29:231–40.CrossRefPubMed
8.
go back to reference Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med. 2003;50:164–74.CrossRefPubMed Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med. 2003;50:164–74.CrossRefPubMed
9.
go back to reference Kudo K, Sasaki M, Yamada K, Momoshima S, Utsunomiya H, Shirato H, et al. Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients. Radiology. 2010;254:200–9.CrossRefPubMed Kudo K, Sasaki M, Yamada K, Momoshima S, Utsunomiya H, Shirato H, et al. Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients. Radiology. 2010;254:200–9.CrossRefPubMed
10.
go back to reference Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med. 2000;44:466–73.CrossRefPubMed Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med. 2000;44:466–73.CrossRefPubMed
11.
go back to reference Konstas AA, Goldmakher GV, Lee TY, Lev MH. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke. Part 1. Theoretic basis. AJNR Am J Neuroradiol. 2009;30:662–8.CrossRefPubMed Konstas AA, Goldmakher GV, Lee TY, Lev MH. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke. Part 1. Theoretic basis. AJNR Am J Neuroradiol. 2009;30:662–8.CrossRefPubMed
12.
go back to reference Heiss WD, Grond M, Thiel A, von Stockhausen HM, Rudolf J. Ischaemic brain tissue salvaged from infarction with alteplase. Lancet. 1997;349:1599–600.CrossRefPubMed Heiss WD, Grond M, Thiel A, von Stockhausen HM, Rudolf J. Ischaemic brain tissue salvaged from infarction with alteplase. Lancet. 1997;349:1599–600.CrossRefPubMed
13.
go back to reference Wintermark M, Flanders AE, Velthuis B, Meuli R, Van Leeuwen M, Goldsher D, et al. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke. 2006;37:979–85.CrossRefPubMed Wintermark M, Flanders AE, Velthuis B, Meuli R, Van Leeuwen M, Goldsher D, et al. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke. 2006;37:979–85.CrossRefPubMed
14.
go back to reference Ding B, Ling HW, Chen KM, Jiang H, Zhu YB. Comparison of cerebral blood volume and permeability in preoperative grading of intracranial glioma using CT perfusion imaging. Neuroradiology. 2006;48:773–81.CrossRefPubMed Ding B, Ling HW, Chen KM, Jiang H, Zhu YB. Comparison of cerebral blood volume and permeability in preoperative grading of intracranial glioma using CT perfusion imaging. Neuroradiology. 2006;48:773–81.CrossRefPubMed
15.
go back to reference Ellika S, Jain R, Patel S, Scarpace L, Schultz LR, Rock JP, et al. Role of perfusion CT in glioma grading and comparison with conventional MR imaging features. Am J Neuroradiol. 2012;33:2038–42.CrossRef Ellika S, Jain R, Patel S, Scarpace L, Schultz LR, Rock JP, et al. Role of perfusion CT in glioma grading and comparison with conventional MR imaging features. Am J Neuroradiol. 2012;33:2038–42.CrossRef
16.
go back to reference Reichenbach JR, Röther J, Jonetz-Mentzel L, Herzau M, Fiala A, Weiller C, et al. Acute stroke evaluated by time-to-peak mapping during initial and early follow-up perfusion CT studies. Am J Neuroradiol. 1999;20:1842–50.PubMed Reichenbach JR, Röther J, Jonetz-Mentzel L, Herzau M, Fiala A, Weiller C, et al. Acute stroke evaluated by time-to-peak mapping during initial and early follow-up perfusion CT studies. Am J Neuroradiol. 1999;20:1842–50.PubMed
17.
go back to reference Olivot JM, Mlynash M, Thijs VN, Kemp S, Lansberg MG, Wechsler L, et al. Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke. 2009;40:469–75.CrossRefPubMed Olivot JM, Mlynash M, Thijs VN, Kemp S, Lansberg MG, Wechsler L, et al. Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke. 2009;40:469–75.CrossRefPubMed
18.
go back to reference Donnan GA, Baron JC, Ma H, Davis SM. Penumbral selection of patients for trials of acute stroke therapy. Lancet Neurol. 2009;8:261–9.CrossRefPubMed Donnan GA, Baron JC, Ma H, Davis SM. Penumbral selection of patients for trials of acute stroke therapy. Lancet Neurol. 2009;8:261–9.CrossRefPubMed
19.
go back to reference Calamante F, Christensen S, Desmond PM, Østergaard L, Davis SM, Connelly A. The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI. Stroke. 2010;41:1169–74.CrossRefPubMed Calamante F, Christensen S, Desmond PM, Østergaard L, Davis SM, Connelly A. The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI. Stroke. 2010;41:1169–74.CrossRefPubMed
20.
go back to reference Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab. 1999;19:701–35.CrossRefPubMed Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab. 1999;19:701–35.CrossRefPubMed
Metadata
Title
Quantitative accuracy of computed tomography perfusion under low-dose conditions, measured using a hollow-fiber phantom
Authors
Kazufumi Suzuki
Hiroyuki Hashimoto
Eiji Okaniwa
Hiroshi Iimura
Shingo Suzaki
Kayoko Abe
Shuji Sakai
Publication date
01-07-2017
Publisher
Springer Japan
Published in
Japanese Journal of Radiology / Issue 7/2017
Print ISSN: 1867-1071
Electronic ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-017-0642-y

Other articles of this Issue 7/2017

Japanese Journal of Radiology 7/2017 Go to the issue