Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 5/2021

Open Access 01-05-2021 | Original Article

CycleGAN for interpretable online EMT compensation

Authors: Henry Krumb, Dhritimaan Das, Romol Chadda, Anirban Mukhopadhyay

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 5/2021

Login to get access

Abstract

Purpose

Electromagnetic tracking (EMT) can partially replace X-ray guidance in minimally invasive procedures, reducing radiation in the OR. However, in this hybrid setting, EMT is disturbed by metallic distortion caused by the X-ray device. We plan to make hybrid navigation clinical reality to reduce radiation exposure for patients and surgeons, by compensating EMT error.

Methods

Our online compensation strategy exploits cycle-consistent generative adversarial neural networks (CycleGAN). Positions are translated from various bedside environments to their bench equivalents, by adjusting their z-component. Domain-translated points are fine-tuned on the x–y plane to reduce error in the bench domain. We evaluate our compensation approach in a phantom experiment.

Results

Since the domain-translation approach maps distorted points to their laboratory equivalents, predictions are consistent among different C-arm environments. Error is successfully reduced in all evaluation environments. Our qualitative phantom experiment demonstrates that our approach generalizes well to an unseen C-arm environment.

Conclusion

Adversarial, cycle-consistent training is an explicable, consistent and thus interpretable approach for online error compensation. Qualitative assessment of EMT error compensation gives a glimpse to the potential of our method for rotational error compensation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aoki T, Mansour DA, Koizumi T, Wada Y, Enami Y, Fujimori A, Kusano T, Matsuda K, Nogaki K, Tashiro Y, Hakozaki T, Shibata H, Tomioka K, Hirai T, Yamazaki T, Saito K, Goto S, Watanabe M, Otsuka K, Murakami M (2020) F. J Gastrointest Surg 230(3):1–8 Aoki T, Mansour DA, Koizumi T, Wada Y, Enami Y, Fujimori A, Kusano T, Matsuda K, Nogaki K, Tashiro Y, Hakozaki T, Shibata H, Tomioka K, Hirai T, Yamazaki T, Saito K, Goto S, Watanabe M, Otsuka K, Murakami M (2020) F. J Gastrointest Surg 230(3):1–8
2.
go back to reference Dijkstra ML, Eagleton MJ, Greenberg RK, Mastracci T, Hernandez A (2011) Intraoperative c-arm cone-beam computed tomography in fenestrated/branched aortic endografting. J Vasc Surg 53(3):583–590CrossRef Dijkstra ML, Eagleton MJ, Greenberg RK, Mastracci T, Hernandez A (2011) Intraoperative c-arm cone-beam computed tomography in fenestrated/branched aortic endografting. J Vasc Surg 53(3):583–590CrossRef
3.
go back to reference Franz AM, Haidegger T, Birkfellner W, Cleary K, Peters TM, Maier-Hein L (2014) Electromagnetic tracking in medicine-a review of technology, validation, and applications. IEEE Trans Med Imaging 33(8):1702–1725CrossRef Franz AM, Haidegger T, Birkfellner W, Cleary K, Peters TM, Maier-Hein L (2014) Electromagnetic tracking in medicine-a review of technology, validation, and applications. IEEE Trans Med Imaging 33(8):1702–1725CrossRef
4.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: NEURIPS, pp 2672–2680 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: NEURIPS, pp 2672–2680
5.
go back to reference Kazeminia S, Baur C, Kuijper A, van Ginneken B, Navab N, Albarqouni S, Mukhopadhyay A (2020) Gans for medical image analysis. Artif Intell Med 109:101938CrossRef Kazeminia S, Baur C, Kuijper A, van Ginneken B, Navab N, Albarqouni S, Mukhopadhyay A (2020) Gans for medical image analysis. Artif Intell Med 109:101938CrossRef
6.
go back to reference Kindratenko VV (2000) A survey of electromagnetic position tracker calibration techniques. Virtual Reality 5(3):169–182CrossRef Kindratenko VV (2000) A survey of electromagnetic position tracker calibration techniques. Virtual Reality 5(3):169–182CrossRef
7.
go back to reference Kindratenko VV, Sherman WR (2005) Neural network-based calibration of electromagnetic tracking systems. Virtual Reality 9(1):70–78CrossRef Kindratenko VV, Sherman WR (2005) Neural network-based calibration of electromagnetic tracking systems. Virtual Reality 9(1):70–78CrossRef
9.
go back to reference Krumb H, Hofmann S, Kügler D, Ghazy A, Dorweiler B, Bredemann J, Schmitt R, Sakas G, Mukhopadhyay A (2020) Leveraging spatial uncertainty for online error compensation in emt. IJCARS, pp 1–9 Krumb H, Hofmann S, Kügler D, Ghazy A, Dorweiler B, Bredemann J, Schmitt R, Sakas G, Mukhopadhyay A (2020) Leveraging spatial uncertainty for online error compensation in emt. IJCARS, pp 1–9
10.
go back to reference Kügler D, Krumb H, Bredemann J, Stenin I, Kristin J, Klenzner T, Schipper J, Schmitt R, Sakas G, Mukhopadhyay A (2019) High-precision evaluation of electromagnetic tracking. IJCARS 14(7):1127–1135 Kügler D, Krumb H, Bredemann J, Stenin I, Kristin J, Klenzner T, Schipper J, Schmitt R, Sakas G, Mukhopadhyay A (2019) High-precision evaluation of electromagnetic tracking. IJCARS 14(7):1127–1135
11.
go back to reference Lakshminarayanan B, Pritzel A, Blundell C (2017) Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in neural information processing systems, pp 6402–6413 Lakshminarayanan B, Pritzel A, Blundell C (2017) Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in neural information processing systems, pp 6402–6413
12.
go back to reference Nash J (1951) Non-cooperative games. Ann Math 54(2):286–295 Nash J (1951) Non-cooperative games. Ann Math 54(2):286–295
13.
go back to reference Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché Buc F, Fox E, Garnett R (eds) NEURIPS 32. Curran Associates, Inc, pp 8024–8035 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché Buc F, Fox E, Garnett R (eds) NEURIPS 32. Curran Associates, Inc, pp 8024–8035
14.
go back to reference Sadjadi H, Hashtrudi-Zaad K, Fichtinger G (2016) Simultaneous electromagnetic tracking and calibration for dynamic field distortion compensation. TBME 63(8):1771–1781 Sadjadi H, Hashtrudi-Zaad K, Fichtinger G (2016) Simultaneous electromagnetic tracking and calibration for dynamic field distortion compensation. TBME 63(8):1771–1781
15.
go back to reference Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826
16.
go back to reference Tjoa E, Guan C (2020) A survey on explainable artificial intelligence (xai): towards medical xai. IEEE Trans Neural Netw Learn Syst Tjoa E, Guan C (2020) A survey on explainable artificial intelligence (xai): towards medical xai. IEEE Trans Neural Netw Learn Syst
17.
go back to reference Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV
Metadata
Title
CycleGAN for interpretable online EMT compensation
Authors
Henry Krumb
Dhritimaan Das
Romol Chadda
Anirban Mukhopadhyay
Publication date
01-05-2021
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 5/2021
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-021-02324-1

Other articles of this Issue 5/2021

International Journal of Computer Assisted Radiology and Surgery 5/2021 Go to the issue