Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 1/2020

01-01-2020 | Transesophageal Echocardiography | Original Article

Combining position-based dynamics and gradient vector flow for 4D mitral valve segmentation in TEE sequences

Authors: Lennart Tautz, Lars Walczak, Joachim Georgii, Amer Jazaerli, Katharina Vellguth, Isaac Wamala, Simon Sündermann, Volkmar Falk, Anja Hennemuth

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 1/2020

Login to get access

Abstract

Purpose

For planning and guidance of minimally invasive mitral valve repair procedures, 3D+t transesophageal echocardiography (TEE) sequences are acquired before and after the intervention. The valve is then visually and quantitatively assessed in selected phases. To enable a quantitative assessment of valve geometry and pathological properties in all heart phases, as well as the changes achieved through surgery, we aim to provide a new 4D segmentation method.

Methods

We propose a tracking-based approach combining gradient vector flow (GVF) and position-based dynamics (PBD). An open-state surface model of the valve is propagated through time to the closed state, attracted by the GVF field of the leaflet area. The PBD method ensures topological consistency during deformation. For evaluation, one expert in cardiac surgery annotated the closed-state leaflets in 10 TEE sequences of patients with normal and abnormal mitral valves, and defined the corresponding open-state models.

Results

The average point-to-surface distance between the manual annotations and the final tracked model was \(1.00\,\hbox {mm} \pm 1.08\,\hbox {mm}\). Qualitatively, four cases were satisfactory, five passable and one unsatisfactory. Each sequence could be segmented in 2–6 min.

Conclusion

Our approach enables to segment the mitral valve in 4D TEE image data with normal and pathological valve closing behavior. With this method, in addition to the quantification of the remaining orifice area, shape and dimensions of the coaptation zone can be analyzed and considered for planning and surgical result assessment.
Literature
1.
go back to reference Agricola E (2004) Echocardiographic classification of chronic ischemic mitral regurgitation caused by restricted motion according to tethering pattern. Eur J Echocardiogr 5(5):326–334CrossRef Agricola E (2004) Echocardiographic classification of chronic ischemic mitral regurgitation caused by restricted motion according to tethering pattern. Eur J Echocardiogr 5(5):326–334CrossRef
2.
go back to reference Bender J, Müller M, Macklin M (2017) Position-based simulation methods in computer graphics. In: EUROGRAPHICS 2017 Tutorials. Eurographics Association Bender J, Müller M, Macklin M (2017) Position-based simulation methods in computer graphics. In: EUROGRAPHICS 2017 Tutorials. Eurographics Association
3.
go back to reference Bender J, Müller M, Otaduy MA, Teschner M, Macklin M (2014) A survey on position-based simulation methods in computer graphics. Comput Graph Forum 33(6):228–251CrossRef Bender J, Müller M, Otaduy MA, Teschner M, Macklin M (2014) A survey on position-based simulation methods in computer graphics. Comput Graph Forum 33(6):228–251CrossRef
4.
go back to reference Burlina P, Sprouse C, DeMenthon D, Jorstad A, Juang R, Contijoch F, Abraham T, Yuh DD, McVeigh ER (2010) Patient-specific modeling and analysis of the mitral valve using 3D-TEE. In: IPCAI. Springer, pp 135–146 Burlina P, Sprouse C, DeMenthon D, Jorstad A, Juang R, Contijoch F, Abraham T, Yuh DD, McVeigh ER (2010) Patient-specific modeling and analysis of the mitral valve using 3D-TEE. In: IPCAI. Springer, pp 135–146
5.
go back to reference Xu Chenyang , Prince J (1997) Gradient vector flow: a new external force for snakes. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, San Juan, Puerto Rico. IEEE Computer Socirty, pp 66–71 Xu Chenyang , Prince J (1997) Gradient vector flow: a new external force for snakes. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, San Juan, Puerto Rico. IEEE Computer Socirty, pp 66–71
6.
go back to reference De Veene H, Bertrand PB, Popovic N, Vandervoort PM, Claus P, De Beule M, Heyde B (2015) Automatic mitral annulus tracking in volumetric ultrasound using non-rigid image registration. In: 2015 37th Annual international conference of the IEEE engineering in Medicine and Biology Society (EMBC), Milan. IEEE, pp 1985–1988 De Veene H, Bertrand PB, Popovic N, Vandervoort PM, Claus P, De Beule M, Heyde B (2015) Automatic mitral annulus tracking in volumetric ultrasound using non-rigid image registration. In: 2015 37th Annual international conference of the IEEE engineering in Medicine and Biology Society (EMBC), Milan. IEEE, pp 1985–1988
7.
go back to reference Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57CrossRef Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57CrossRef
8.
go back to reference Engelhardt S, Al-Maisary S, Karck M, Simone RD, Wolf I (2017) Modellierung der Prä- und Postoperativen Mitralklappe zur Retrospektiven Beurteilung der Komplexen Valvulären Remodellierungschirurgie [German], p 7 Engelhardt S, Al-Maisary S, Karck M, Simone RD, Wolf I (2017) Modellierung der Prä- und Postoperativen Mitralklappe zur Retrospektiven Beurteilung der Komplexen Valvulären Remodellierungschirurgie [German], p 7
9.
go back to reference Grbic S, Easley TF, Mansi T, Bloodworth CH, Pierce EL, Voigt I, Neumann D, Krebs J, Yuh DD, Jensen MO, Comaniciu D, Yoganathan AP (2017) Personalized mitral valve closure computation and uncertainty analysis from 3D echocardiography. Med Image Anal 35:238–249CrossRef Grbic S, Easley TF, Mansi T, Bloodworth CH, Pierce EL, Voigt I, Neumann D, Krebs J, Yuh DD, Jensen MO, Comaniciu D, Yoganathan AP (2017) Personalized mitral valve closure computation and uncertainty analysis from 3D echocardiography. Med Image Anal 35:238–249CrossRef
10.
go back to reference Grbic S, Voigt I, Mansi T, Georgescu B, Ionasec R, Comaniciu D (2016) Aortic and mitral valve modeling from multi-modal image data. In: Kevin Zhou S (ed) Medical image recognition, segmentation and parsing, Elsevier, Amsterdam, pp 363–382 CrossRef Grbic S, Voigt I, Mansi T, Georgescu B, Ionasec R, Comaniciu D (2016) Aortic and mitral valve modeling from multi-modal image data. In: Kevin Zhou S (ed) Medical image recognition, segmentation and parsing, Elsevier, Amsterdam, pp 363–382 CrossRef
11.
go back to reference Ionasec RI, Voigt I, Georgescu B, Wang Y, Houle H, Vega-Higuera F, Navab N, Comaniciu D (2010) Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and TEE. IEEE Trans Med Imaging 29(9):1636–1651CrossRef Ionasec RI, Voigt I, Georgescu B, Wang Y, Houle H, Vega-Higuera F, Navab N, Comaniciu D (2010) Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and TEE. IEEE Trans Med Imaging 29(9):1636–1651CrossRef
12.
go back to reference Johnson HJ, McCormick MM, Ibanez L (2015) The ITK software guide book 1: introduction and development guidelines-volume 1. Kitware Inc, New York Johnson HJ, McCormick MM, Ibanez L (2015) The ITK software guide book 1: introduction and development guidelines-volume 1. Kitware Inc, New York
13.
go back to reference Klawki R, Schmidt K, Heinemann M (eds) (2018) Deutscher Herzbericht 2018, Deutsche Herzstiftung, Frankfurt am Main Klawki R, Schmidt K, Heinemann M (eds) (2018) Deutscher Herzbericht 2018, Deutsche Herzstiftung, Frankfurt am Main
14.
go back to reference Macklin M, Müller M, Chentanez N (2016) XPBD: position-based simulation of compliant constrained dynamics. In: Proceedings of the 9th international conference on motion in games, MIG ’16, New York, NY, USA. ACM, pp 49–54 Macklin M, Müller M, Chentanez N (2016) XPBD: position-based simulation of compliant constrained dynamics. In: Proceedings of the 9th international conference on motion in games, MIG ’16, New York, NY, USA. ACM, pp 49–54
15.
go back to reference Mansi T, Voigt I, Georgescu B, Zheng X, Mengue EA, Hackl M, Ionasec RI, Noack T, Seeburger J, Comaniciu D (2012) An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med Image Anal 16(7):1330–1346CrossRef Mansi T, Voigt I, Georgescu B, Zheng X, Mengue EA, Hackl M, Ionasec RI, Noack T, Seeburger J, Comaniciu D (2012) An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med Image Anal 16(7):1330–1346CrossRef
16.
go back to reference Möller T, Trumbore B (1997) Fast, minimum storage ray-triangle intersection. J Graph Tools 2(1):21–28CrossRef Möller T, Trumbore B (1997) Fast, minimum storage ray-triangle intersection. J Graph Tools 2(1):21–28CrossRef
17.
go back to reference Müller M, Heidelberger B, Hennix M, Ratcliff J (2007) Position based dynamics. J Vis Commun Image Represent 18(2):109–118CrossRef Müller M, Heidelberger B, Hennix M, Ratcliff J (2007) Position based dynamics. J Vis Commun Image Represent 18(2):109–118CrossRef
18.
go back to reference Pedrosa J, Queiros S, Vilaca J, Badano L, D’hooge J (2018) Fully automatic assessment of mitral valve morphology from 3D transthoracic echocardiography. In: Proceeding of 2018 IEEE international ultrasonics symposium, p 6 Pedrosa J, Queiros S, Vilaca J, Badano L, D’hooge J (2018) Fully automatic assessment of mitral valve morphology from 3D transthoracic echocardiography. In: Proceeding of 2018 IEEE international ultrasonics symposium, p 6
19.
go back to reference Pouch A, Wang H, Takabe M, Jackson B, Gorman J, Gorman R, Yushkevich P, Sehgal C (2014) Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling. Med Image Anal 18(1):118–129CrossRef Pouch A, Wang H, Takabe M, Jackson B, Gorman J, Gorman R, Yushkevich P, Sehgal C (2014) Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling. Med Image Anal 18(1):118–129CrossRef
20.
go back to reference Pouch AM, Aly AH, Lai EK, Yushkevich N, Stoffers RH, Gorman JH, Cheung AT, Gorman RC, Yushkevich PA (2017) Spatiotemporal segmentation and modeling of the mitral valve in real-time 3D echocardiographic images. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 746–754 Pouch AM, Aly AH, Lai EK, Yushkevich N, Stoffers RH, Gorman JH, Cheung AT, Gorman RC, Yushkevich PA (2017) Spatiotemporal segmentation and modeling of the mitral valve in real-time 3D echocardiographic images. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 746–754
21.
go back to reference Pouch AM, Jackson BM, Lai E, Takebe M, Tian S, Cheung AT, Woo YJ, Patel PA, Wang H, Yushkevich PA, Gorman RC, Gorman JH (2016) Modeling the myxomatous mitral valve with three-dimensional echocardiography. Ann Thorac Surg 102(3):703–710CrossRef Pouch AM, Jackson BM, Lai E, Takebe M, Tian S, Cheung AT, Woo YJ, Patel PA, Wang H, Yushkevich PA, Gorman RC, Gorman JH (2016) Modeling the myxomatous mitral valve with three-dimensional echocardiography. Ann Thorac Surg 102(3):703–710CrossRef
22.
go back to reference Ritter F, Boskamp T, Homeyer A, Laue H, Schwier M, Link F, Peitgen H (2011) Medical image analysis. IEEE Pulse 2(6):60–70CrossRef Ritter F, Boskamp T, Homeyer A, Laue H, Schwier M, Link F, Peitgen H (2011) Medical image analysis. IEEE Pulse 2(6):60–70CrossRef
23.
go back to reference Schneider RJ, Burke WC, Marx GR, del Nido PJ, Howe RD (2011) Modeling mitral valve leaflets from three-dimensional ultrasound. In: Metaxas DN, Axel L (eds) Functional imaging and modeling of the heart, vol 6666. Springer, Berlin, pp 215–222CrossRef Schneider RJ, Burke WC, Marx GR, del Nido PJ, Howe RD (2011) Modeling mitral valve leaflets from three-dimensional ultrasound. In: Metaxas DN, Axel L (eds) Functional imaging and modeling of the heart, vol 6666. Springer, Berlin, pp 215–222CrossRef
24.
go back to reference Schneider RJ, Perrin DP, Vasilyev NV, Marx GR, del Nido PJ, Howe RD (2010) Mitral annulus segmentation from 3D ultrasound using graph cuts. IEEE Trans Med Imaging 29(9):1676–1687CrossRef Schneider RJ, Perrin DP, Vasilyev NV, Marx GR, del Nido PJ, Howe RD (2010) Mitral annulus segmentation from 3D ultrasound using graph cuts. IEEE Trans Med Imaging 29(9):1676–1687CrossRef
25.
go back to reference Schneider RJ, Perrin DP, Vasilyev NV, Marx GR, del Nido PJ, Howe RD (2012) Mitral annulus segmentation from four-dimensional ultrasound using a valve state predictor and constrained optical flow. Med Image Anal 16(2):497–504CrossRef Schneider RJ, Perrin DP, Vasilyev NV, Marx GR, del Nido PJ, Howe RD (2012) Mitral annulus segmentation from four-dimensional ultrasound using a valve state predictor and constrained optical flow. Med Image Anal 16(2):497–504CrossRef
26.
go back to reference Schneider RJ, Tenenholtz NA, Perrin DP, Marx GR, del Nido PJ, Howe RD (2011) Patient-specific mitral leaflet segmentation from 4D ultrasound. In: Fichtinger G, Martel A, Peters T (eds) Medical image computing and computer-assisted intervention—MICCAI 2011, vol 6893. Springer, Berlin, pp 520–527CrossRef Schneider RJ, Tenenholtz NA, Perrin DP, Marx GR, del Nido PJ, Howe RD (2011) Patient-specific mitral leaflet segmentation from 4D ultrasound. In: Fichtinger G, Martel A, Peters T (eds) Medical image computing and computer-assisted intervention—MICCAI 2011, vol 6893. Springer, Berlin, pp 520–527CrossRef
27.
go back to reference Sotaquira M, Pepi M, Fusini L, Maffessanti F, Lang RM, Caiani EG (2015) Semi-automated segmentation and quantification of mitral annulus and leaflets from transesophageal 3-D echocardiographic images. Ultrasound Med Biol 41(1):251–267CrossRef Sotaquira M, Pepi M, Fusini L, Maffessanti F, Lang RM, Caiani EG (2015) Semi-automated segmentation and quantification of mitral annulus and leaflets from transesophageal 3-D echocardiographic images. Ultrasound Med Biol 41(1):251–267CrossRef
28.
go back to reference Tautz L, Neugebauer M, Hüllebrand M, Vellguth K, Degener F, Sündermann S, Wamala I, Goubergrits L, Kuehne T, Falk V, Hennemuth A (2018) Extraction of open-state mitral valve geometry from CT volumes. Int J Comput Assist Radiol Surg 13:1741–1754CrossRef Tautz L, Neugebauer M, Hüllebrand M, Vellguth K, Degener F, Sündermann S, Wamala I, Goubergrits L, Kuehne T, Falk V, Hennemuth A (2018) Extraction of open-state mitral valve geometry from CT volumes. Int J Comput Assist Radiol Surg 13:1741–1754CrossRef
29.
go back to reference Vellguth K, Brüning J, Tautz L, Degener F, Wamala I, Sündermann S, Kertzscher U, Kuehne T, Hennemuth A, Falk V, Goubergrits L (2019) User-dependent variability in mitral valve segmentation and its impact on CFD-computed hemodynamic parameters. Int J Comput Assist Radiol Surg 1–10 Vellguth K, Brüning J, Tautz L, Degener F, Wamala I, Sündermann S, Kertzscher U, Kuehne T, Hennemuth A, Falk V, Goubergrits L (2019) User-dependent variability in mitral valve segmentation and its impact on CFD-computed hemodynamic parameters. Int J Comput Assist Radiol Surg 1–10
30.
go back to reference Veronesi F, Corsi C, Mor-Avi V, Sugeng L, Caiani E, Weinert L, Lamberti C, Lang R (2008) Semi-automatic detection and tracking of mitral and aortic annuli from real-time 3D transesophageal echocardiographic images. In: 2008 Computers in cardiology, Bologna, Italy. IEEE, pp 33–36 Veronesi F, Corsi C, Mor-Avi V, Sugeng L, Caiani E, Weinert L, Lamberti C, Lang R (2008) Semi-automatic detection and tracking of mitral and aortic annuli from real-time 3D transesophageal echocardiographic images. In: 2008 Computers in cardiology, Bologna, Italy. IEEE, pp 33–36
31.
go back to reference Walczak L, Georgii J, Tautz L, Neugebauer M, Wamala I, Sündermann S, Falk V, Hennemuth A (2019) Using position-based dynamics for simulating the mitral valve in a decision support system. In: Proceedings of the 9th EG workshop on visual computing for biology and medicine Walczak L, Georgii J, Tautz L, Neugebauer M, Wamala I, Sündermann S, Falk V, Hennemuth A (2019) Using position-based dynamics for simulating the mitral valve in a decision support system. In: Proceedings of the 9th EG workshop on visual computing for biology and medicine
32.
go back to reference Xia W, Moore J, Chen ECS, Xu Y, Ginty O, Bainbridge D, Peters TM (2018) Signal dropout correction-based ultrasound segmentation for diastolic mitral valve modeling. J Med Imaging 5(02):1 Xia W, Moore J, Chen ECS, Xu Y, Ginty O, Bainbridge D, Peters TM (2018) Signal dropout correction-based ultrasound segmentation for diastolic mitral valve modeling. J Med Imaging 5(02):1
Metadata
Title
Combining position-based dynamics and gradient vector flow for 4D mitral valve segmentation in TEE sequences
Authors
Lennart Tautz
Lars Walczak
Joachim Georgii
Amer Jazaerli
Katharina Vellguth
Isaac Wamala
Simon Sündermann
Volkmar Falk
Anja Hennemuth
Publication date
01-01-2020
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 1/2020
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-02071-4

Other articles of this Issue 1/2020

International Journal of Computer Assisted Radiology and Surgery 1/2020 Go to the issue