Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 1/2020

01-01-2020 | Ultrasound | Original Article

A comparison of thin-plate spline deformation and finite element modeling to compensate for brain shift during tumor resection

Authors: Sarah Frisken, Ma Luo, Parikshit Juvekar, Adomas Bunevicius, Ines Machado, Prashin Unadkat, Melina M. Bertotti, Matt Toews, William M. Wells, Michael I. Miga, Alexandra J. Golby

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 1/2020

Login to get access

Abstract

Purpose

Brain shift during tumor resection can progressively invalidate the accuracy of neuronavigation systems and affect neurosurgeons’ ability to achieve optimal resections. This paper compares two methods that have been presented in the literature to compensate for brain shift: a thin-plate spline deformation model and a finite element method (FEM). For this comparison, both methods are driven by identical sparse data. Specifically, both methods are driven by displacements between automatically detected and matched feature points from intraoperative 3D ultrasound (iUS). Both methods have been shown to be fast enough for intraoperative brain shift correction (Machado et al. in Int J Comput Assist Radiol Surg 13(10):1525–1538, 2018; Luo et al. in J Med Imaging (Bellingham) 4(3):035003, 2017). However, the spline method requires no preprocessing and ignores physical properties of the brain while the FEM method requires significant preprocessing and incorporates patient-specific physical and geometric constraints. The goal of this work was to explore the relative merits of these methods on recent clinical data.

Methods

Data acquired during 19 sequential tumor resections in Brigham and Women’s Hospital’s Advanced Multi-modal Image-Guided Operating Suite between December 2017 and October 2018 were considered for this retrospective study. Of these, 15 cases and a total of 24 iUS to iUS image pairs met inclusion requirements. Automatic feature detection (Machado et al. in Int J Comput Assist Radiol Surg 13(10):1525–1538, 2018) was used to detect and match features in each pair of iUS images. Displacements between matched features were then used to drive both the spline model and the FEM method to compensate for brain shift between image acquisitions. The accuracies of the resultant deformation models were measured by comparing the displacements of manually identified landmarks before and after deformation.

Results

The mean initial subcortical registration error between preoperative MRI and the first iUS image averaged 5.3 ± 0.75 mm. The mean subcortical brain shift, measured using displacements between manually identified landmarks in pairs of iUS images, was 2.5 ± 1.3 mm. Our results showed that FEM was able to reduce subcortical registration error by a small but statistically significant amount (from 2.46 to 2.02 mm). A large variability in the results of the spline method prevented us from demonstrating either a statistically significant reduction in subcortical registration error after applying the spline method or a statistically significant difference between the results of the two methods.

Conclusions

In this study, we observed less subcortical brain shift than has previously been reported in the literature (Frisken et al., in: Miller (ed) Biomechanics of the brain, Springer, Cham, 2019). This may be due to the fact that we separated out the initial misregistration between preoperative MRI and the first iUS image from our brain shift measurements or it may be due to modern neurosurgical practices designed to reduce brain shift, including reduced craniotomy sizes and better control of intracranial pressure with the use of mannitol and other medications. It appears that the FEM method and its use of geometric and biomechanical constraints provided more consistent brain shift correction and better correction farther from the driving feature displacements than the simple spline model. The spline-based method was simpler and tended to give better results for small deformations. However, large variability in the spline results and relatively small brain shift prevented this study from demonstrating a statistically significant difference between the results of the two methods.
Literature
3.
go back to reference Drouin S, Kochanowska A, Kersten-Oertel M, Gerard IJ, Zelmann R, De Nigris D, Beriault S, Arbel T, Sirhan D, Sadikot AF, Hall JA, Sinclair DS, Petrecca K, DelMaestro RF, Collins DL (2017) IBIS: an OR ready open-source platform for image-guided neurosurgery. Int J Comput Assist Radiol Surg 12(3):363–378CrossRef Drouin S, Kochanowska A, Kersten-Oertel M, Gerard IJ, Zelmann R, De Nigris D, Beriault S, Arbel T, Sirhan D, Sadikot AF, Hall JA, Sinclair DS, Petrecca K, DelMaestro RF, Collins DL (2017) IBIS: an OR ready open-source platform for image-guided neurosurgery. Int J Comput Assist Radiol Surg 12(3):363–378CrossRef
4.
go back to reference Askeland C, Solberg OV, Bakeng JB, Reinertsen I, Tangen GA, Hofstad EF, Iversen DH, Vapenstad C, Selbekk T, Lango T, Hernes TA, Leira HO, Unsgard G, Lindseth F (2016) CustusX: an open-source research platform for image-guided therapy. Int J Comput Assist Radiol Surg 11(4):505–519CrossRef Askeland C, Solberg OV, Bakeng JB, Reinertsen I, Tangen GA, Hofstad EF, Iversen DH, Vapenstad C, Selbekk T, Lango T, Hernes TA, Leira HO, Unsgard G, Lindseth F (2016) CustusX: an open-source research platform for image-guided therapy. Int J Comput Assist Radiol Surg 11(4):505–519CrossRef
5.
go back to reference Fahlbusch R, Ganslandt O, Nimsky C (2000) Intraoperative imaging with open magnetic resonance imaging and neuronavigation. Childs Nerv Syst 16(10–11):829–831CrossRef Fahlbusch R, Ganslandt O, Nimsky C (2000) Intraoperative imaging with open magnetic resonance imaging and neuronavigation. Childs Nerv Syst 16(10–11):829–831CrossRef
6.
go back to reference Frisken S, Unadkat P, Yang X, Miga MI, Golby A (2019) Intraoperative measurement of brain deformation. In: Miller K (ed) Biomechanics of the brain. Springer, Cham Frisken S, Unadkat P, Yang X, Miga MI, Golby A (2019) Intraoperative measurement of brain deformation. In: Miller K (ed) Biomechanics of the brain. Springer, Cham
7.
go back to reference Gerard IJ, Kersten-Oertel M, Petrecca K, Sirhan D, Hall JA, Collins DL (2017) Brain shift in neuronavigation of brain tumors: a review. Med Image Anal 35:403–420CrossRef Gerard IJ, Kersten-Oertel M, Petrecca K, Sirhan D, Hall JA, Collins DL (2017) Brain shift in neuronavigation of brain tumors: a review. Med Image Anal 35:403–420CrossRef
8.
go back to reference Bayer S, Maier A, Ostermeier M, Fahrig R (2017) Intraoperative imaging modalities and compensation for brain shift in tumor resection surgery. Int J Biomed Imaging 2017:6028645CrossRef Bayer S, Maier A, Ostermeier M, Fahrig R (2017) Intraoperative imaging modalities and compensation for brain shift in tumor resection surgery. Int J Biomed Imaging 2017:6028645CrossRef
9.
go back to reference Miga MI (2016) Computational modeling for enhancing soft tissue image guided surgery: an application in neurosurgery. Ann Biomed Eng 44(1):128–138CrossRef Miga MI (2016) Computational modeling for enhancing soft tissue image guided surgery: an application in neurosurgery. Ann Biomed Eng 44(1):128–138CrossRef
10.
go back to reference Coburger J, Merkel A, Scherer M, Schwartz F, Gessler F, Roder C, Pala A, Konig R, Bullinger L, Nagel G, Jungk C, Bisdas S, Nabavi A, Ganslandt O, Seifert V, Tatagiba M, Senft C, Mehdorn M, Unterberg AW, Rossler K, Wirtz CR (2016) Low-grade glioma surgery in intraoperative magnetic resonance imaging: results of a multicenter retrospective assessment of the German study group for intraoperative magnetic resonance imaging. Neurosurgery 78(6):775–786CrossRef Coburger J, Merkel A, Scherer M, Schwartz F, Gessler F, Roder C, Pala A, Konig R, Bullinger L, Nagel G, Jungk C, Bisdas S, Nabavi A, Ganslandt O, Seifert V, Tatagiba M, Senft C, Mehdorn M, Unterberg AW, Rossler K, Wirtz CR (2016) Low-grade glioma surgery in intraoperative magnetic resonance imaging: results of a multicenter retrospective assessment of the German study group for intraoperative magnetic resonance imaging. Neurosurgery 78(6):775–786CrossRef
11.
go back to reference Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12(11):997–1003CrossRef Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12(11):997–1003CrossRef
12.
go back to reference Hernes TA, Ommedal S, Lie T, Lindseth F, Lango T, Unsgaard G (2003) Stereoscopic navigation-controlled display of preoperative MRI and intraoperative 3D ultrasound in planning and guidance of neurosurgery: new technology for minimally invasive image-guided surgery approaches. Minim Invasive Neurosurg 46(3):129–137CrossRef Hernes TA, Ommedal S, Lie T, Lindseth F, Lango T, Unsgaard G (2003) Stereoscopic navigation-controlled display of preoperative MRI and intraoperative 3D ultrasound in planning and guidance of neurosurgery: new technology for minimally invasive image-guided surgery approaches. Minim Invasive Neurosurg 46(3):129–137CrossRef
13.
go back to reference Unsgaard G, Rygh OM, Selbekk T, Muller TB, Kolstad F, Lindseth F, Hernes TA (2006) Intra-operative 3D ultrasound in neurosurgery. Acta Neurochir (Wien) 148(3):235–253 (discussion 253) CrossRef Unsgaard G, Rygh OM, Selbekk T, Muller TB, Kolstad F, Lindseth F, Hernes TA (2006) Intra-operative 3D ultrasound in neurosurgery. Acta Neurochir (Wien) 148(3):235–253 (discussion 253) CrossRef
14.
go back to reference Tharin S, Golby A (2007) Functional brain mapping and its applications to neurosurgery. Neurosurgery 60(4 Suppl 2):185–201 (discussion 201-2) PubMed Tharin S, Golby A (2007) Functional brain mapping and its applications to neurosurgery. Neurosurgery 60(4 Suppl 2):185–201 (discussion 201-2) PubMed
15.
go back to reference Upadhyay UM, Golby AJ (2008) Role of pre- and intraoperative imaging and neuronavigation in neurosurgery. Expert Rev Med Devices 5(1):65–73CrossRef Upadhyay UM, Golby AJ (2008) Role of pre- and intraoperative imaging and neuronavigation in neurosurgery. Expert Rev Med Devices 5(1):65–73CrossRef
16.
go back to reference Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK (2001) Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging 20(12):1384–1397CrossRef Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK (2001) Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging 20(12):1384–1397CrossRef
17.
go back to reference Hata N, Nabavi A, Wells WM III, Warfield SK, Kikinis R, Black PM, Jolesz FA (2000) Three-dimensional optical flow method for measurement of volumetric brain deformation from intraoperative MR images. J Comput Assist Tomogr 24(4):531–538CrossRef Hata N, Nabavi A, Wells WM III, Warfield SK, Kikinis R, Black PM, Jolesz FA (2000) Three-dimensional optical flow method for measurement of volumetric brain deformation from intraoperative MR images. J Comput Assist Tomogr 24(4):531–538CrossRef
18.
go back to reference Archip N, Clatz O, Whalen S, Kacher D, Fedorov A, Kot A, Chrisochoides N, Jolesz F, Golby A, Black PM, Warfield SK (2007) Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. Neuroimage 35(2):609–624CrossRef Archip N, Clatz O, Whalen S, Kacher D, Fedorov A, Kot A, Chrisochoides N, Jolesz F, Golby A, Black PM, Warfield SK (2007) Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. Neuroimage 35(2):609–624CrossRef
19.
go back to reference Drakopoulos F, Chrisochoides NP (2016) Accurate and fast deformable medical image registration for brain tumor resection using image-guided neurosurgery. Comput Methods Biomech Biomed Eng Imaging Vis 4(2):112–126CrossRef Drakopoulos F, Chrisochoides NP (2016) Accurate and fast deformable medical image registration for brain tumor resection using image-guided neurosurgery. Comput Methods Biomech Biomed Eng Imaging Vis 4(2):112–126CrossRef
20.
go back to reference Letteboer MM, Willems PW, Viergever MA, Niessen WJ (2005) Brain shift estimation in image-guided neurosurgery using 3-D ultrasound. IEEE Trans Biomed Eng 52(2):268–276CrossRef Letteboer MM, Willems PW, Viergever MA, Niessen WJ (2005) Brain shift estimation in image-guided neurosurgery using 3-D ultrasound. IEEE Trans Biomed Eng 52(2):268–276CrossRef
21.
go back to reference Comeau RM, Sadikot AF, Fenster A, Peters TM (2000) Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery. Med Phys 27(4):787–800CrossRef Comeau RM, Sadikot AF, Fenster A, Peters TM (2000) Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery. Med Phys 27(4):787–800CrossRef
22.
go back to reference Bonsanto MM, Staubert A, Wirtz CR, Tronnier V, Kunze S (2001) Initial experience with an ultrasound-integrated single-RACK neuronavigation system. Acta Neurochir (Wien) 143(11):1127–1132CrossRef Bonsanto MM, Staubert A, Wirtz CR, Tronnier V, Kunze S (2001) Initial experience with an ultrasound-integrated single-RACK neuronavigation system. Acta Neurochir (Wien) 143(11):1127–1132CrossRef
23.
go back to reference Lunn KE, Hartov A, Kennedy FE, Miga MI, Roberts DW, Platenik LA, Paulsen KD (2001) 3D ultrasound as sparse data for intraoperative brain deformation model. Med Imaging 2001:326–332 Lunn KE, Hartov A, Kennedy FE, Miga MI, Roberts DW, Platenik LA, Paulsen KD (2001) 3D ultrasound as sparse data for intraoperative brain deformation model. Med Imaging 2001:326–332
24.
go back to reference Chacko AG, Kumar NK, Chacko G, Athyal R, Rajshekhar V (2003) Intraoperative ultrasound in determining the extent of resection of parenchymal brain tumours: a comparative study with computed tomography and histopathology. Acta Neurochir (Wien) 145(9):743–748 (discussion 748) CrossRef Chacko AG, Kumar NK, Chacko G, Athyal R, Rajshekhar V (2003) Intraoperative ultrasound in determining the extent of resection of parenchymal brain tumours: a comparative study with computed tomography and histopathology. Acta Neurochir (Wien) 145(9):743–748 (discussion 748) CrossRef
25.
go back to reference Ji S, Wu Z, Hartov A, Roberts DW, Paulsen KD (2008) Mutual-information-based image to patient re-registration using intraoperative ultrasound in image-guided neurosurgery. Med Phys 35(10):4612–4624CrossRef Ji S, Wu Z, Hartov A, Roberts DW, Paulsen KD (2008) Mutual-information-based image to patient re-registration using intraoperative ultrasound in image-guided neurosurgery. Med Phys 35(10):4612–4624CrossRef
26.
go back to reference Rivaz H, Collins DL (2015) Deformable registration of preoperative MR, pre-resection ultrasound, and post-resection ultrasound images of neurosurgery. Int J Comput Assist Radiol Surg 10(7):1017–1028CrossRef Rivaz H, Collins DL (2015) Deformable registration of preoperative MR, pre-resection ultrasound, and post-resection ultrasound images of neurosurgery. Int J Comput Assist Radiol Surg 10(7):1017–1028CrossRef
27.
go back to reference Wein W, Ladikos A, Fuerst B, Shah A, Sharma K, Navab N (2013) Global registration of ultrasound to MRI using the LC2 metric for enabling neurosurgical guidance. Med Image Comput Comput Assist Interv 16(Pt 1):34–41PubMed Wein W, Ladikos A, Fuerst B, Shah A, Sharma K, Navab N (2013) Global registration of ultrasound to MRI using the LC2 metric for enabling neurosurgical guidance. Med Image Comput Comput Assist Interv 16(Pt 1):34–41PubMed
28.
go back to reference Fuerst B, Wein W, Muller M, Navab N (2014) Automatic ultrasound-MRI registration for neurosurgery using the 2D and 3D LC(2) metric. Med Image Anal 18(8):1312–1319CrossRef Fuerst B, Wein W, Muller M, Navab N (2014) Automatic ultrasound-MRI registration for neurosurgery using the 2D and 3D LC(2) metric. Med Image Anal 18(8):1312–1319CrossRef
29.
go back to reference Stoyanov D, Taylor Z, Aylward S, Tavares JMRS, Xiao Y, Simpson A, Martel A, Maier-Hein L, Li S, Rivaz H, Reinertsen I, Chabanas M, Farahani K (eds) (2018) Simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. Springer, Berlin Stoyanov D, Taylor Z, Aylward S, Tavares JMRS, Xiao Y, Simpson A, Martel A, Maier-Hein L, Li S, Rivaz H, Reinertsen I, Chabanas M, Farahani K (eds) (2018) Simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. Springer, Berlin
30.
go back to reference Ji S, Fan X, Roberts DW, Hartov A, Paulsen KD (2014) Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration. Med Image Anal 18(7):1169–1183CrossRef Ji S, Fan X, Roberts DW, Hartov A, Paulsen KD (2014) Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration. Med Image Anal 18(7):1169–1183CrossRef
31.
go back to reference Sinha TK, Dawant BM, Duay V, Cash DM, Weil RJ, Thompson RC, Weaver KD, Miga MI (2005) A method to track cortical surface deformations using a laser range scanner. IEEE Trans Med Imaging 24(6):767–781CrossRef Sinha TK, Dawant BM, Duay V, Cash DM, Weil RJ, Thompson RC, Weaver KD, Miga MI (2005) A method to track cortical surface deformations using a laser range scanner. IEEE Trans Med Imaging 24(6):767–781CrossRef
32.
go back to reference Machado I, Toews M, Luo J, Unadkat P, Essayed W, George E, Teodoro P, Carvalho H, Martins J, Golland P, Pieper S, Frisken S, Golby A, Wells W III (2018) Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching. Int J Comput Assist Radiol Surg 13(10):1525–1538CrossRef Machado I, Toews M, Luo J, Unadkat P, Essayed W, George E, Teodoro P, Carvalho H, Martins J, Golland P, Pieper S, Frisken S, Golby A, Wells W III (2018) Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching. Int J Comput Assist Radiol Surg 13(10):1525–1538CrossRef
33.
go back to reference Luo M, Frisken SF, Weis JA, Clements LW, Unadkat P, Thompson RC, Golby AJ, Miga MI (2017) Retrospective study comparing model-based deformation correction to intraoperative magnetic resonance imaging for image-guided neurosurgery. J Med Imaging (Bellingham) 4(3):035003 Luo M, Frisken SF, Weis JA, Clements LW, Unadkat P, Thompson RC, Golby AJ, Miga MI (2017) Retrospective study comparing model-based deformation correction to intraoperative magnetic resonance imaging for image-guided neurosurgery. J Med Imaging (Bellingham) 4(3):035003
36.
go back to reference Kikinis R, Pieper D, Vosburgh K (2014) 3D Slicer: a platform for subject-specfic image analysis, visualization, and clinical support. In: Jolesz FA (ed) Intraoperative imaging image-guided therapy, vol 3, issue 19. Springer, NY, pp 277–289CrossRef Kikinis R, Pieper D, Vosburgh K (2014) 3D Slicer: a platform for subject-specfic image analysis, visualization, and clinical support. In: Jolesz FA (ed) Intraoperative imaging image-guided therapy, vol 3, issue 19. Springer, NY, pp 277–289CrossRef
37.
go back to reference Duchon J (1977) Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Schempp W, Zeller K (eds) Constructive theory of functions of several variables. Lecture notes in mathematics, vol 571. Springer, Berlin, Heidelberg Duchon J (1977) Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Schempp W, Zeller K (eds) Constructive theory of functions of several variables. Lecture notes in mathematics, vol 571. Springer, Berlin, Heidelberg
38.
go back to reference Sun K, Pheiffer TS, Simpson AL, Weis JA, Thompson RC, Miga MI (2014) Near real-time computer assisted surgery for brain shift correction using biomechanical models. IEEE J Transl Eng Health Med 2:1–13CrossRef Sun K, Pheiffer TS, Simpson AL, Weis JA, Thompson RC, Miga MI (2014) Near real-time computer assisted surgery for brain shift correction using biomechanical models. IEEE J Transl Eng Health Med 2:1–13CrossRef
39.
go back to reference Miga MI, Sun K, Chen I, Clements LW, Pheiffer TS, Simpson AL, Thompson RC (2016) Clinical evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases. Int J Comput Assist Radiol Surg 11(8):1467–1474CrossRef Miga MI, Sun K, Chen I, Clements LW, Pheiffer TS, Simpson AL, Thompson RC (2016) Clinical evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases. Int J Comput Assist Radiol Surg 11(8):1467–1474CrossRef
Metadata
Title
A comparison of thin-plate spline deformation and finite element modeling to compensate for brain shift during tumor resection
Authors
Sarah Frisken
Ma Luo
Parikshit Juvekar
Adomas Bunevicius
Ines Machado
Prashin Unadkat
Melina M. Bertotti
Matt Toews
William M. Wells
Michael I. Miga
Alexandra J. Golby
Publication date
01-01-2020
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 1/2020
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-02057-2

Other articles of this Issue 1/2020

International Journal of Computer Assisted Radiology and Surgery 1/2020 Go to the issue