Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 7/2019

01-07-2019 | Original Article

Video-based surgical skill assessment using 3D convolutional neural networks

Authors: Isabel Funke, Sören Torge Mees, Jürgen Weitz, Stefanie Speidel

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 7/2019

Login to get access

Abstract

Purpose

A profound education of novice surgeons is crucial to ensure that surgical interventions are effective and safe. One important aspect is the teaching of technical skills for minimally invasive or robot-assisted procedures. This includes the objective and preferably automatic assessment of surgical skill. Recent studies presented good results for automatic, objective skill evaluation by collecting and analyzing motion data such as trajectories of surgical instruments. However, obtaining the motion data generally requires additional equipment for instrument tracking or the availability of a robotic surgery system to capture kinematic data. In contrast, we investigate a method for automatic, objective skill assessment that requires video data only. This has the advantage that video can be collected effortlessly during minimally invasive and robot-assisted training scenarios.

Methods

Our method builds on recent advances in deep learning-based video classification. Specifically, we propose to use an inflated 3D ConvNet to classify snippets, i.e., stacks of a few consecutive frames, extracted from surgical video. The network is extended into a temporal segment network during training.

Results

We evaluate the method on the publicly available JIGSAWS dataset, which consists of recordings of basic robot-assisted surgery tasks performed on a dry lab bench-top model. Our approach achieves high skill classification accuracies ranging from 95.1 to 100.0%.

Conclusions

Our results demonstrate the feasibility of deep learning-based assessment of technical skill from surgical video. Notably, the 3D ConvNet is able to learn meaningful patterns directly from the data, alleviating the need for manual feature engineering. Further evaluation will require more annotated data for training and testing.
Literature
1.
go back to reference Ahmed K, Miskovic D, Darzi A, Athanasiou T, Hanna GB (2011) Observational tools for assessment of procedural skills: a systematic review. Am J Surg 202(4):469–480CrossRefPubMed Ahmed K, Miskovic D, Darzi A, Athanasiou T, Hanna GB (2011) Observational tools for assessment of procedural skills: a systematic review. Am J Surg 202(4):469–480CrossRefPubMed
2.
go back to reference Ahmidi N, Tao L, Sefati S, Gao Y, Lea C, Haro BB, Zappella L, Khudanpur S, Vidal R, Hager GD (2017) A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans Biomed Eng 64(9):2025–2041CrossRefPubMedPubMedCentral Ahmidi N, Tao L, Sefati S, Gao Y, Lea C, Haro BB, Zappella L, Khudanpur S, Vidal R, Hager GD (2017) A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans Biomed Eng 64(9):2025–2041CrossRefPubMedPubMedCentral
3.
go back to reference Bouget D, Allan M, Stoyanov D, Jannin P (2017) Vision-based and marker-less surgical tool detection and tracking: a review of the literature. Med Image Anal 35:633–654CrossRefPubMed Bouget D, Allan M, Stoyanov D, Jannin P (2017) Vision-based and marker-less surgical tool detection and tracking: a review of the literature. Med Image Anal 35:633–654CrossRefPubMed
4.
go back to reference Bradski G (2000) The OpenCV library. Dr. Dobb’s J Softw Tools 25(11):120–125 Bradski G (2000) The OpenCV library. Dr. Dobb’s J Softw Tools 25(11):120–125
5.
go back to reference Bromley J, Guyon I, LeCun Y, Säckinger E, Shah R (1994) Signature verification using a “siamese” time delay neural network. In: NIPS, pp 737–744 Bromley J, Guyon I, LeCun Y, Säckinger E, Shah R (1994) Signature verification using a “siamese” time delay neural network. In: NIPS, pp 737–744
6.
go back to reference Carreira J, Zisserman A (2017) Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR, pp 4724–4733 Carreira J, Zisserman A (2017) Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR, pp 4724–4733
7.
go back to reference Chmarra MK, Grimbergen CA, Dankelman J (2007) Systems for tracking minimally invasive surgical instruments. Minim Invasive Ther Allied Technol 16(6):328–340CrossRefPubMed Chmarra MK, Grimbergen CA, Dankelman J (2007) Systems for tracking minimally invasive surgical instruments. Minim Invasive Ther Allied Technol 16(6):328–340CrossRefPubMed
8.
go back to reference Doughty H, Damen D, Mayol-Cuevas WW (2018) Who’s better, who’s best: skill determination in video using deep ranking. In: CVPR, pp 6057–6066 Doughty H, Damen D, Mayol-Cuevas WW (2018) Who’s better, who’s best: skill determination in video using deep ranking. In: CVPR, pp 6057–6066
9.
go back to reference Du X, Kurmann T, Chang PL, Allan M, Ourselin S, Sznitman R, Kelly JD, Stoyanov D (2018) Articulated multi-instrument 2D pose estimation using fully convolutional networks. IEEE Trans Med Imaging 37(5):1276–1287CrossRefPubMed Du X, Kurmann T, Chang PL, Allan M, Ourselin S, Sznitman R, Kelly JD, Stoyanov D (2018) Articulated multi-instrument 2D pose estimation using fully convolutional networks. IEEE Trans Med Imaging 37(5):1276–1287CrossRefPubMed
10.
go back to reference Fard MJ, Ameri S, Darin Ellis R, Chinnam RB, Pandya AK, Klein MD (2018) Automated robot-assisted surgical skill evaluation: predictive analytics approach. Int J Med Robot 14(1):e1850CrossRef Fard MJ, Ameri S, Darin Ellis R, Chinnam RB, Pandya AK, Klein MD (2018) Automated robot-assisted surgical skill evaluation: predictive analytics approach. Int J Med Robot 14(1):e1850CrossRef
11.
go back to reference Gao Y, Vedula SS, Reiley CE, Ahmidi N, Varadarajan B, Lin HC, Tao L, Zappella L, Béjar B, Yuh DD, Chen CCG, Vidal R, Khudanpur S, Hager GD (2014) JHU-ISI gesture and skill assessment working set (JIGSAWS): a surgical activity dataset for human motion modeling. In: M2CAI Gao Y, Vedula SS, Reiley CE, Ahmidi N, Varadarajan B, Lin HC, Tao L, Zappella L, Béjar B, Yuh DD, Chen CCG, Vidal R, Khudanpur S, Hager GD (2014) JHU-ISI gesture and skill assessment working set (JIGSAWS): a surgical activity dataset for human motion modeling. In: M2CAI
12.
go back to reference Goh AC, Aghazadeh MA, Mercado MA, Hung AJ, Pan MM, Desai MM, Gill IS, Dunkin BJ (2015) Multi-institutional validation of fundamental inanimate robotic skills tasks. J Urol 194(6):1751–1756CrossRefPubMed Goh AC, Aghazadeh MA, Mercado MA, Hung AJ, Pan MM, Desai MM, Gill IS, Dunkin BJ (2015) Multi-institutional validation of fundamental inanimate robotic skills tasks. J Urol 194(6):1751–1756CrossRefPubMed
13.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp 770–778
14.
go back to reference Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller PA (2018) Evaluating surgical skills from kinematic data using convolutional neural networks. In: MICCAI, pp 214–221 Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller PA (2018) Evaluating surgical skills from kinematic data using convolutional neural networks. In: MICCAI, pp 214–221
15.
go back to reference Ji S, Xu W, Yang M, Yu K (2013) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231CrossRefPubMed Ji S, Xu W, Yang M, Yu K (2013) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231CrossRefPubMed
16.
go back to reference Jin A, Yeung S, Jopling J, Krause J, Azagury D, Milstein A, Fei-Fei, L (2018) Tool detection and operative skill assessment in surgical videos using region-based convolutional neural networks. In: WACV, pp 691–699 Jin A, Yeung S, Jopling J, Krause J, Azagury D, Milstein A, Fei-Fei, L (2018) Tool detection and operative skill assessment in surgical videos using region-based convolutional neural networks. In: WACV, pp 691–699
17.
go back to reference Kay W, Carreira J, Simonyan K, Zhang B, Hillier C, Vijayanarasimhan S, Viola F, Green T, Back T, Natsev P, Suleyman M, Zisserman A (2017) The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 Kay W, Carreira J, Simonyan K, Zhang B, Hillier C, Vijayanarasimhan S, Viola F, Green T, Back T, Natsev P, Suleyman M, Zisserman A (2017) The kinetics human action video dataset. arXiv preprint arXiv:​1705.​06950
18.
go back to reference Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: ICLR Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: ICLR
19.
go back to reference Laina I, Rieke N, Rupprecht C, Vizcaíno JP, Eslami A, Tombari F, Navab N (2017) Concurrent segmentation and localization for tracking of surgical instruments. In: MICCAI, pp 664–672 Laina I, Rieke N, Rupprecht C, Vizcaíno JP, Eslami A, Tombari F, Navab N (2017) Concurrent segmentation and localization for tracking of surgical instruments. In: MICCAI, pp 664–672
20.
go back to reference LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
21.
go back to reference Martin J, Regehr G, Reznick R, Macrae H, Murnaghan J, Hutchison C, Brown M (1997) Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg 84(2):273–278CrossRefPubMed Martin J, Regehr G, Reznick R, Macrae H, Murnaghan J, Hutchison C, Brown M (1997) Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg 84(2):273–278CrossRefPubMed
22.
go back to reference Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in PyTorch. In: NIPS Workshops Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in PyTorch. In: NIPS Workshops
23.
go back to reference Peters JH, Fried GM, Swanstrom LL, Soper NJ, Sillin LF, Schirmer B, Hoffman K, Sages FLS Committee (2004) Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. Surgery 135(1):21–27 Peters JH, Fried GM, Swanstrom LL, Soper NJ, Sillin LF, Schirmer B, Hoffman K, Sages FLS Committee (2004) Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. Surgery 135(1):21–27
24.
go back to reference Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. In: NIPS, pp 568–576 Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. In: NIPS, pp 568–576
25.
go back to reference Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: CVPR, pp 2818–2826 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: CVPR, pp 2818–2826
26.
go back to reference Tao L, Elhamifar E, Khudanpur S, Hager GD, Vidal R (2012) Sparse hidden markov models for surgical gesture classification and skill evaluation. In: IPCAI, pp 167–177 Tao L, Elhamifar E, Khudanpur S, Hager GD, Vidal R (2012) Sparse hidden markov models for surgical gesture classification and skill evaluation. In: IPCAI, pp 167–177
27.
go back to reference Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3D convolutional networks. In: ICCV, pp 4489–4497 Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3D convolutional networks. In: ICCV, pp 4489–4497
28.
go back to reference Vedula SS, Ishii M, Hager GD (2017) Objective assessment of surgical technical skill and competency in the operating room. Annu Rev Biomed Eng 19:301–325CrossRefPubMedPubMedCentral Vedula SS, Ishii M, Hager GD (2017) Objective assessment of surgical technical skill and competency in the operating room. Annu Rev Biomed Eng 19:301–325CrossRefPubMedPubMedCentral
29.
go back to reference Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, Van Gool L (2016) Temporal segment networks: Towards good practices for deep action recognition. In: ECCV. Springer, pp 20–36 Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, Van Gool L (2016) Temporal segment networks: Towards good practices for deep action recognition. In: ECCV. Springer, pp 20–36
31.
go back to reference Wang Z, Majewicz Fey A (2018) Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery. Int J Comput Assist Radiol Surg 13(12):1959–1970CrossRefPubMed Wang Z, Majewicz Fey A (2018) Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery. Int J Comput Assist Radiol Surg 13(12):1959–1970CrossRefPubMed
32.
go back to reference Zach C, Pock T, Bischof H (2007) A duality based approach for realtime TV-L1 optical flow. In: Joint pattern recognition symposium. Springer, pp 214–223 Zach C, Pock T, Bischof H (2007) A duality based approach for realtime TV-L1 optical flow. In: Joint pattern recognition symposium. Springer, pp 214–223
33.
go back to reference Zia A, Essa I (2018) Automated surgical skill assessment in RMIS training. Int J Comput Assist Radiol Surg 13(5):731–739CrossRefPubMed Zia A, Essa I (2018) Automated surgical skill assessment in RMIS training. Int J Comput Assist Radiol Surg 13(5):731–739CrossRefPubMed
34.
go back to reference Zia A, Sharma Y, Bettadapura V, Sarin EL, Essa I (2018) Video and accelerometer-based motion analysis for automated surgical skills assessment. Int J Comput Assist Radiol Surg 13(3):443–455CrossRefPubMed Zia A, Sharma Y, Bettadapura V, Sarin EL, Essa I (2018) Video and accelerometer-based motion analysis for automated surgical skills assessment. Int J Comput Assist Radiol Surg 13(3):443–455CrossRefPubMed
Metadata
Title
Video-based surgical skill assessment using 3D convolutional neural networks
Authors
Isabel Funke
Sören Torge Mees
Jürgen Weitz
Stefanie Speidel
Publication date
01-07-2019
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 7/2019
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-01995-1

Other articles of this Issue 7/2019

International Journal of Computer Assisted Radiology and Surgery 7/2019 Go to the issue